
5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

Repetition and Loops

Lesson #5

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

Repetition and Loops

Loop: A control structure that repeats a
group of steps (statements) in a
program.

Loop body: Contains the statements
that are repeated in the loop.

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

Do I Need a Loop?
1. Are there any steps you must repeat to

solve the problem? If yes, you need a loop.

2. Do you know in advance the number of
repetitions? If yes, you need a counting loop.

3. Do you know when to stop the repetition? If
not, you will not be able to program the loop.

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

Types of Loops
Counting Loop: A loop with a fixed number of

repetitions.
 Ex: Repeat 100 times...

Sentinel-Controlled Loop: A loop that reads
values from a file or keyboard and stops
reading when a certain value (called a
sentinel) is read.
 Ex: Read numbers continuously until you

encounter a value of -99.

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

Types of Loops
End-of-File Controlled Loop: A loop that

reads values from a file and stops when
there are no more values to read.
 Ex: Read numbers continuously until you

encounter the end of the file.

Input Validation Loop: A loop that keeps
asking a value from the user until the user
gets it right.
 Ex: Keep asking the user for a positive

number until the user enters one.

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

Types of Loops
General Conditional Loop: A loop that

checks a certain condition and repeats the
statements in the loop body if the condition
is true. When the condition is false, the loop
is ended and the statements are not
repeated. This kind of loop encompasses all
the other kinds.

 Ex: Print numbers on the screen while the
numbers are below 100.

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

Loops in C
 In C, all loop are implemented with general

conditional loops. By programming them
properly, we can achieve all the types of
loops.

 For example, a counting loop (repeat 100
times) will be done by starting a variable at
1, then have a condition to stop the loop
when the variable becomes larger than 100.
Inside the loop the program will add 1 to the
variable at each repetition.

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

The while Statement
 The while statement permits the repetition

of the statements until the condition
becomes false.

Syntax:

while (condition)
{
 statements executed/repeated if
condition is true

}

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

A Counting Loop
int n;

n = 1; /* initialization */

while (n <= 100) /* condition */

{

 printf ("%d ", n); /* body */
 n = n + 1; /* update */

}

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

Execution of the while Statement
 In a while loop, the initialization is

performed once, then the condition is
checked. If the condition is true, the
body and update statements are
executed and the condition is then
checked again. If the condition is false,
the loop ends and the program
continues to the next statement.

condition body updateinit

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

The for Statement
 The for statement permits the repetition of the

statements until the condition becomes false. It
works exactly like a while statement except that
the syntax is slightly different.

Syntax:
for (initialization; condition; update)
{
 statements

executed/repeated
if condition is true

}

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

Counting Loop (for Statement)

int n;

for (n = 1; n <= 100; ++n)

 printf ("%d ", n);

init cond update

body

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

Execution of the for Statement
 In a for loop, the initialization is

performed once, then the condition is
checked. If the condition is true, the
body and update statements are
executed and the condition is then
checked again. If the condition is false,
the loop ends and the program
continues to the next statement.

condition body updateinit

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

for vs. while
 The for loop is used when we know in

advance the number of iterations
(counting loops).

 The while loop is used when we don't.

 This is a style issue only. We know that
the for statement works exactly like the
while statement.

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

Sentinel-Controlled Loop
/* program to compute the sum of all
numbers entered */

int number,sum;
sum = 0;
printf ("Enter a number (Enter 0 to
 finish): ");

scanf ("%d", &number);
while (number != 0)
{
 sum = sum + number;
 printf ("Enter a number (Enter 0 to
 finish): ");

 scanf ("%d", &number);
}
printf ("The sum is %d.\n", sum);

0 is the
sentinel

. not part of %d, just the end of
the sentence

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

EOF-Controlled Loop
 An end-of-file (EOF) controlled loop is used to

read values until the end of file is encountered.

 This sort of loop uses the fact that a file goes into
a fail status when you try to read a data value
beyond the end of a file.

Note: We will see five versions of eof-controlled loops using
input redirection (scanf) and file I/O (fscanf). Knowledge of one
method is sufficient, no need to know all. If you prefer
redirection, look at versions I and II, if you prefer file I/O look at
versions III, IV, and V. Note that redirection is often easier for
beginners.

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

Status
 In a reading statement (like scanf), we can check

the status of the readings by assigning the
statement to an integer variable.

 If everything works as intended, the status will be the
number of variables filled by the reading statement.
(Ex: in status=scanf ("%d%d", &a,&b); , status will
have a value of 2).

 When reading from a file, sometimes there are no
more numbers to read. In that case the status
becomes -1, also known as EOF.

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

EOF-Controlled Loop I
/* program to compute the sum of all the
numbers present in a file */

int number, sum, status;
sum = 0;
status = scanf ("%d", &number);
while (status != EOF)
{
 sum = sum + number;
 status = scanf ("%d", &number);
}
printf ("The sum is %d.\n", sum);

Try to read a
first number.
Status will be

either 1
(success) or -1

(fail).

Check if at end of file
(not fail is success). If

not, proceed inside
loop.

Alternatives to !=EOF
in this case are:

!= -1
== 1.

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

EOF-Controlled Loop II
/* program to compute the sum of all the
numbers present in a file – equivalent
to previous example */

int number, sum;
sum = 0;
while (scanf ("%d", &number) != EOF)
{
 sum = sum + number;
}
printf ("The sum is %d.\n", sum);

Can you spot the differences between I and II?
This is the preferred version.

Try to read a
first number.

Check if at end of
file. If not, proceed

inside loop.

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

EOF-Controlled Loop III
/* similar to version I - with fscanf */

int number, sum, status;
FILE* in;
in = fopen ("data.txt", "r");
sum = 0;
status = fscanf (in, "%d", &number);
while (status != EOF)
{
 sum = sum + number;
 status = fscanf (in, "%d", &number);
}
printf ("The sum is %d.\n", sum);
fclose (in);

Try to read a
first number.
Status will be

either 1
(success) or -1

(fail).

Check if at end of file (not
fail is success). If not,
proceed inside loop.

Alternatives to !=EOF in
this case are:

!= -1
== 1.

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

EOF-Controlled Loop IV
/* similar to version II - with fscanf */
int number, sum;
FILE* in;
in = fopen ("data.txt", "r");
sum = 0;
while (fscanf (in, "%d", &number) != EOF)
{
 sum = sum + number;
}
printf ("The sum is %d.\n", sum);
fclose (in);

Try to read a
first number.

Check if at end of
file. If not, proceed

inside loop.

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

EOF-Controlled Loop V
/* a version using the feof statement */
int number, sum;
FILE* in;
in = fopen ("data.txt", "r");
sum = 0;
fscanf (in, "%d", &number);
while (!feof (in))
{
 sum = sum + number;
 fscanf (in, "%d", &number);
}
printf ("The sum is %d.\n", sum);
fclose (in);

Check if at end of
file. If not, proceed

inside loop.

Try to read
first number

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

The do-while Statement
 The do-while statement is yet another version of

the repetition in C but works slightly different.

 Contrary to the while and for statements, the body of
the loop is executed once even if the condition is false
because the condition is checked at the end of the
loop, not the beginning.

do
{
 statements that will be repeated;
} while (condition);

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

The do-while Statement
/* A do-while loop */

int number, sum;
sum = 0; number = 1;
do
{
 sum = sum + number;
 ++number;
}while (sum <= 5); /* see the ; here */

printf ("The sum is %d.\n", sum);
printf ("The number is %d.\n", number);

/*what will be the printed values of sum and
number? */

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

Execution of the do-while Statement

 In a do-while loop, the initialization is
performed once, then the body and
update statements are executed, and
finally the condition is checked. If the
condition is true, the body and update
are executed once more. If the condition
is false, the loop ends and the program
continues to the next statement.

body update conditioninit

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

Input Validation Loop
/* input validation loop */
int n;

do
{
 printf ("Enter a number between 1 and
 5");

 scanf ("%d", &n);
}while (n < 1 || n > 5);

/* rest of program */
...

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

Nested Loops
 A nested loop is a loop within a loop,

an inner loop within the body of an
outer one.

 The inner and outer loops need not
be generated by the same control
structure (one can be a while loop,
the other a for loop).

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

Nested Loops
 The inner loop must be completely

embedded in the outer loop (no
overlaps).

 Each loop must be controlled by a
different index (loop control variable).
i and j are often used and sometimes
the outer loop (big loop) is called the
i-loop and the inner loop (little loop)
the j-loop.

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

A Nested Loop Example
 Suppose we want to display a 12x12

multiplication table. A nested loop
here will make perfect sense. We can
use the outer loop for the multiplicand
and the inner loop for the
multiplicator.

 The idea is to loop the outer loop 12
times and for each value, loop the
inner loop 12 times as well.

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

A Nested Loop Example
#include <stdio.h>
int
main (void)
{

int i, j;
for (i = 1; i <= 12; ++i)
{

for (j= 1; j <=12 ; ++j)
printf ("%4d", i * j);

printf ("\n");
}
return (0);

}

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

A Nested Loop Example

See programs 6, 7, 8, and 9 at c.ihypress.ca/04.php for
more advanced examples of nested loops.

5. Repetition and Loops - Copyright © Denis Hamelin - Ryerson University

End of Lesson

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

