
Lesson #7

Arrays

Why arrays?
 To group distinct variables of the same type

under a single name.

 Suppose you need 100 temperatures from
100 different weather stations: A simple (but
time consuming) solution would be to have
100 different variables to hold the values. A
better solution is to have one array with 100
cells.

Declaring arrays
 To declare regular variables (a.k.a. scalar

variables), you just specify its type and its name:
 double x;

 You also have the option of declaring and putting
a value in it at the same time:

 double y=3.57;

 To declare an array, you specify its type, its name
and how many cells you need:

 double z[100];

Declaring arrays
 You can also put the values in the

array while declaring it:
 double a[5]={1.3, 2.4, 6.2, 4.5, 1.1};

 When declaring and initializing, the
size is then optional:
 double b[]={6.78, 7.88, 4.55, 1.33};

 What is the size of array b?

Referencing values
 Let's have the declaration:

 int age [6];

 It creates an array of integers that looks like this:

 Each cell can be referenced by a number.
Numbering always starts at zero.

age

age
0 1 2 3 4 5

Cell numbers
 A cell is always referenced by its cell

number (also called subscript or offset).

 age[2] is actually the third cell of the array
called age.

 Note that age[6] does not exist! Since age
is size 6, then its cells are numbered from 0
to 5 only.

Filling an array
 To fill an array with values, we first have to know

that individual cells behave exactly like regular
(scalar) variables.

 age[2]=35; will put the value 35 into cell 2.

age
0 1 2 3 4 5

age
0 1 2 3 4 5

35

Filling an array
 You can also ask the user (or read from a file) for a

value to put into the array: scanf ("%d", &age[4]); will
put the value entered into cell #4. Let's suppose the
user enters 42. We have then

You can also have operations like this:
age[0]=age[4]*2+age[2];

age

0 1 2 3 4 5

35 42

age

0 1 2 3 4 5

35 42119

Filling an array
 But by far the most powerful way to fill an array is

to use a loop. The following code,

for (i = 0; i < 6; ++i)
 age[i] = i * i;

will give this result. Notice that the previous
values have been replaced by the new ones
just like regular variables:

age
0 1 2 3 4 5

0 1 4 9 16 25

Filling/printing an array
 Another common way to fill an entire array with a

loop is to read all the values from the keyboard or
a file.

 for (i = 0; i < 6; ++i)
 scanf ("%d", &age[i]);

 An easy way to print out the entire array is:

 for (i = 0; i < 6; ++i)
 printf ("%d ", age[i]);

Arrays and pointers
 We know variables that contain addresses of other

variables in C are called pointers. &x is the address
of x or where is x? If we assign &x to a variable y (y
being of int* type), y becomes a pointer to x and *y is
in fact x itself.

 For arrays, only the address of the first cell is
important as all cells are stored together in the
machine. x[1] is stored next-door to x[0]. The array
name without any subscript is the address of the first
cell (but is not actually a pointer as you cannot modify
it). If I have an array declared int age[6];, age is the
same thing as &age[0].

Arrays and pointers
 Now that we understand the relation between

addresses and arrays better, let's revisit the array
declaration.

 int age [6];

age 0 1 2 3 4 5

age, as we know, is the address of age[0], but age+1
 is the address of age[1], age+2 the address of age[2],
and so on...

Arrays and cells
 age being an array, a statement like age=70;

would be illegal as age would be an address, not
a value. With a value, you must always mention
which cell to fill, so age[3]=70; would be correct.

 The sizeof operator will return the size (in bytes)
of the array.

 printf ("%d", sizeof (age)); would display 24 on a
32-bit system (6 cells of integers at 32 bits or 4
bytes each).

Sending arrays to functions
 Sending an array to a function is like sending

multiple values all at once. The best way is to
send the address (the array name alone) to the
function so that the function can work with the
original array stored in the calling function (main).

 Let's have a function that finds the largest
value in an array of integers and returns the
cell number where it was found. Note that we
must always send the size of the array as an
argument because the function will have no
way of knowing it otherwise.

Sending arrays to functions
find (int array[], int size)
{

int i, largest, where;
largest = array [0];
for (i=0; i<size; ++i)
 if (array[i]>largest)
 {

 largest = array[i];
 where = i;
 }

return (where);
}

*** There is something missing in this
program, can you find out what?

Sending arrays to functions

/* the main program */
int
main (void)
{
 int a[] = {6,2,8,7,3};
 int location;
 location = find (a, 5);
 printf (“Cell #%d\n”, location);
 return (0);
}

Having an array as a “result”
 An array can never be a result as it represents

multiple values. As with function with multiple
“results”, we will have to use pointers.

void
addarrays (const int a[], const int b[],

int c[], int size)
{
 int i;
 for (i=0; i<size; ++i)
 c[i] = a[i] + b[i];
}

 The const option means that the specified array
cannot be modified by the function.

Having an array as a “result”

/* the main program */
int
main (void)
{
 int x[] = {1,2,3,4}, i;

 int y[] = {10,20,30,40};
 int z[4], i;

 addarrays (x, y, z, 4);
 for (i=0; i<4; ++i)

 printf ("%4d", z[i]);
 return (0);
}

Sending arrays to functions
(multiple “results”)

/* function provides the smallest value in an
array and its location */

find_small (int array[], int size, int *smallest)
{

 int i, where;
 *smallest = array [0];

 where = 0;
for (i=0; i<size; ++i)
 if (array[i] < *smallest)
 {

 *smallest = array[i];
 where = i;
 }

return (where);
}

Sending arrays to functions
(multiple “results”)

/* the main program */
int
main (void)
{
 int a[] = {6,2,8,7,3};
 int location, small;
 location = find_small (a, 5, &small);
 printf (“Smallest number: %d\n”, small);
 printf (“Location: %d\n”, location);
 return (0);
}

Dynamic allocation of arrays
 Arrays, as we know them now, can only be

of a fixed size. int x[100]; declares an array
size 100, no less no more.

 It is illegal in ANSI C to do the following. Do
you know why?

printf ("Enter the size of the array: ");
scanf ("%d", &size);
int x[size];

Dynamic Allocation of Arrays
 It is impossible to have arrays of varying

sizes because that makes programming
inefficient. C is very strict with arrays but it
is also the most efficient of all the high-level
languages.

 There is a way to have dynamic allocation
in C. The solution is to use “heap” memory
instead of the usual memory we have been
using so far.

 Heap memory: slower, less-structured,
dynamic memory.

Using a dynamic array
int size;
/* 1. declare a pointer to the array */
double *array;

printf ("Enter the size of the array: ");
scanf ("%d", &size);

/* 2. allocate the array in the heap */
array = (double *) calloc (size, sizeof(double));

/* 3. use the array normally */
...

/* 4. free the heap memory */
free (array);

See the complete program at ihypress.net/programming/c/07.php (program #9)

Arrays of characters (Strings)
 There is no string type in C. Instead, to

approximate strings, we will use arrays of
characters.

 To transform a simple array of characters
into a string, it must contain the '\0'
character in the last cell. Note that '\0' is one
character. It is called the null character or
the end-of-string character.

Strings
 To declare a string and initialize it we could do it the

same way as seen before:
char city[] = {'T', 'o', 'r', 'o', 'n', 't', 'o', '\0'};
 Notice that the size of the array can be omitted here, since the computer can deduce it.

However, declaring the size (in this case 8), is always good form.

 But there is a simpler way:
char city[] = "Toronto";
If you specify the size here, do not forget the invisible '\0'! Size must be 8 not 7!

 The result is exactly the same. By using the simpler
way, the '\0' is added automatically at the end.

'T' 'o' 'r' 'o' 'n' 't' 'o' '\0'city

0 1 2 3 4 5 6 7

"X" and 'X'
 Double quotes " " represent a string, single

quotes ' ', one character.

 'X' is the single character X, but "X" is an
array size 2 containing the 'X' character and
the '\0' character.

 All string constants are represented in
double quotes (remember "This is my first C
program." ?).

Accessing array cells

 Array cells in strings can be accessed by
subscript like numerical arrays. For
example, after the following operation, the
city string seen earlier would become
Taranta.

for (i=0; i<7; ++i)
 if (city[i]=='o')
 city[i]='a';

Arrays of strings
 It is also possible to have arrays of strings.

Since strings are themselves arrays, then
we need to add a second size. An array of
strings is in fact an array with two
dimensions, width (columns) and height
(rows).

 char list_cities[100][15]; will be able to
contain 100 city names with a maximum of
14 letters per city. Why not 15?

Arrays of strings (cont.)

 Example: An array containing the names of
the months.

 char months [12][10] = {"January",
"February", "March", "April", "May", "June",
"July", "August", "September", "October",
"November", "December"};

 Can you find the value of months[3]?
 How about months [7][3]?

Filling a string
 We have already seen how to fill a string by

initializing it in a declarative statement. Now
how to do it in an executable statement.

 To fill a string from standard input (scanf) or
file (fscanf), we use a special placeholder
for strings %s.

 scanf ("%s", city);
(Notice the absence of &. It is not necessary here since city is

already an address, the same as &city[0], remember?)

Filling a string (scanf vs. fgets)
 There is one problem with the %s placeholder

when used with scanf (or fscanf). It considers the
space as a delimiter. Therefore, if for a city name
you enter Los Angeles, you will get only Los
stored in the string.

 The solution is to use a function named fgets.
That function only considers the new line
character as the delimiter, not the space. Instead
of scanf ("%s", city); you use fgets (city, size,
stdin); instead of fscanf (in, "%s", city); you use
fgets(city, size, in);

Filling a string (gets)
 A simpler gets function exists in C but its

usage is considered dangerous.

 gets does not allow you limit the amount of
input, which means it can potentially overflow
the buffer into which the input is placed (for
example you could read a sentence of 100
characters into an array size 10!).

 gets is deprecated (obsolete). Programs that
use gets can actually be a security problem
on your computer. Always use fgets.

Printing a string
 The space problem does not

occur with printf.

 If the city is "Los Angeles" then a
printf ("%s", city); will print out the
entire city name.

String function: strcpy
There are many useful functions to manipulate strings in the

string library (need #include <string.h>).

strcpy: the function to transfer a string into a variable.
Equivalent to the assignation operator. With strings you
cannot do city="Toronto"; in an executable statement. To
do an assignment operation we must use strcpy.

char city[10], city2[10];
strcpy (city, "Toronto");
/* places "Toronto" into city /*
strcpy (city2, city);
/* places "Toronto" into city2 /*

'T' 'o' 'r' 'o' 'n' 't' 'o' '\0' ? ?city2

 0 1 2 3 4 5 6 7 8 9

String function: strlen
 strlen: the strlen function returns the length

of the string not counting the null character.

char city[10];

strcpy (city, "Toronto");
/* places "Toronto" into city */

printf ("%d", strlen (city));
/* displays 7 on the screen */

An example using strings
#include <stdio.h>
#include <string.h>

int
main (void)
{

char city[20], city2[20];

printf ("What is the capital of Canada? ");
fgets (city, 20, stdin); /* the string is read with fgets */

printf ("What is the capital of Argentina? ");
fgets (city2, 20, stdin);

/* \n kept at end if input smaller than array size, replace it with \0 */
city[strlen(city)-1] = '\0';
city2[strlen(city2)-1] = '\0';

/* here is the report */
printf ("\nThe capital of Canada is: %s.", city);
printf ("\nThe capital of Argentina is: %s.", city2);

return (0);
}

Arrays of multiple dimensions

 We have seen that with strings, we can
have arrays of strings. These arrays of
strings are actually arrays of arrays. Arrays
of arrays are also called two-dimensional
arrays. If it is possible with strings, it is also
possible with numerical arrays.

 We use two dimensions when we require
two coordinates: map coordinates, pixels on
a screen, matrix representations and so
on...

Multiple Dimensions
 The number of subscripts used to access a

particular element in an array is called the
dimension of the array. An array of two
dimensions will have two sizes (number of rows
and number of columns), hence by multiplying the
two sizes we obtain the total number of cells.

 For example a dozen eggs
in a carton could be an array
size 2x6.

Two Dimensions
 An array of two dimensions can be

represented by a grid of rows and columns.
Each row is numbered from 0 to size-1 (like
an regular array). The same for the
columns.

 int a[3][4]; will declare an 2D array of
integers with 3 rows (numbered 0-2) and 4
columns (numbered 0-3). By providing the
two coordinates, we can refer to an
individual cell.

 a[1][2]=57; will place the value 57 into the
third cell of the second row.

Two Dimensions

0

1

2

0 1 2 3

57

a

A Simple 2D Program
 Let's have a simple program that will fill

a 5x5 matrix with values taken from a
file that contains 25 integers and then
find the locations of the zero values.

 To travel within a 2D array we will
need two travelling variables (we only
needed one for 1D arrays). We usually
name them i and j for historical
reasons dating from the days of the
Fortran programming language.

A Simple 2D Program
#include <stdio.h>

int
main (void)
{
 int matrix[5][5];
 int i, j;
 FILE *in;

 in=fopen("data2.dat", "r");

 for (i=0; i<5; ++i)
 for (j=0; j<5; ++j)
 fscanf (in, "%d", &matrix[i][j]);

 fclose(in);
/* the matrix is filled */

A Simple 2D Program (Cont.)
/* find zeros */
 for (i=0; i<5; ++i)
 for (j=0; j<5; ++j)
 if (matrix[i][j]==0)
 printf ("Zero found at:
 %d / %d\n", i, j);

/* print matrix */
 for (i=0; i<5; ++i)
 {
 for (j=0; j<5; ++j)
 printf ("%4d", matrix[i][j]);
 printf ("\n");
 }

 return (0);
}

2D Arrays and Functions
 To send a 2D array to a function, we must send

(as we did for 1D arrays), the array name alone as
argument (the address of the array's cell 0). Like
1D arrays of numbers we must send the size (we
need two now, the number of rows and the
number of columns).

 As formal parameters in the function, the array
must be indicated with two subscripts of course
and we must have two parameters to receive the
two sizes..

2D Arrays and Functions
/* get the largest number in a 2D array of doubles */
double

largest2D (double array[10][10], int nrows, int ncols)
{
 int i, j;

 int large = array[0][0];
 for (i=0; i<nrows; ++i)
 for (j=0; j<ncols; ++j)

 if (array[i][j]>large)
 large = array[i][j];
 return (large);
}
See ihypress.net/programming/c/09.php (program #1) for another
example.

The call would
look like this:
y = largest2D (a, r, c);

array sizes

2D Dynamic Allocation
 There are two methods to do dynamic allocation

for two dimensional arrays The first one is called
the “software engineer's method”.

 Dynamic allocation of arrays of more than one
dimension is easily done. You can simulate a two-
dimensional array with a single, dynamically-
allocated one-dimensional array. However, you
must now perform subscript calculations
manually, accessing the [i][j]th element with array[i
* ncolumns + j]. Software engineers prefer this
method for its elegance and efficiency.

2D Dynamic Allocation
 The second method is called the traditional or

“computer scientist's” method.

 Dynamic allocation of arrays of more than one
dimension can also be done using a pointer
pointing to an array of pointer and each pointer of
that array pointing to an array of values. With that
method you can use the real 2-D subscripts like
array[i][j].

 Visit ihypress.net/programming/c/09.php (programs
#5 and #6) for examples of the two methods of 2D
dynamic allocation.

Vectors and Matrices
 One of the most common use of arrays in

scientific or engineering applications is the
translation of vectors into 1D arrays and matrices
into 2D arrays.

 A vector V = <10,20,30,40> would be represented
by an array int v[4] = {10,20,30,40};

 V1 being the first element, in the previous
example, would be 10, represented in C by v[0].
Note that in math we start counting at 1 but in C,
we start at 0.

 For matrices, the same approach uses 2D arrays.
M21 would be translated as m[1][0].

 Visit ihypress.net/programming/c/09.php (programs #2, #3,
and #4) for examples.

End of lesson

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

