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Abstract—In a channel-hopping Cognitive Personal Area Net-
work (CPAN), the main objective of the working channel selection
mechanism is to avoid collisions with unpredictable primary
user activity. As the result, the manner in which the working
channel for the next hop is selected, is among the most important
determinants of CPAN piconet performance. In this paper we
investigate the performance of two working channel selection
algorithms and compare them with the simple random selection
approach. We show that a simple algorithm where the working
channel is selected amongst those that have most recently turned
idle offer better performance in the homogeneous case (i.e.,
where the primary user activity on all channels follows a similar
pattern), while the case with heterogeneous primary user activity
on different channels is better handled by the algorithm in which
predicted probability distribution of channel idle times is used
to select the next working channel.

I. INTRODUCTION

Opportunistic or cognitive spectrum access often relies on
channel hopping [1]. However, predefined hopping sequences,
be they deterministic such as the one used in the so-called
dynamic hopping communities [10] or pseudo-random such
as the one used in Bluetooth [13], are incapable of providing
uninterrupted piconet operation under unpredictable activity
of primary users [7]. Instead, the hopping sequence must be
dynamically determined by choosing the channels with best
transmission parameters and free from interference by primary
users.

In this paper we present a comparative analysis of two
techniques for working channel selection, using blind ran-
dom selection as the convenient reference point. We use
the transmission tax-based protocol from [15], [16] as the
environment in which to implement these techniques, on
account of its availability of superframe-based structure with
integrated sensing protocol and dynamic channel hopping.
(More details on the operation of this MAC protocol can
be found in Section III.) One of the techniques for working
channel selection is based on selecting one among the channels
that have most recently become free – preferably, but not
necessarily, within the last superframe. The other technique
uses slightly more complicated statistical approach of building
and maintaining a histogram of channel idle times. Using the
histogram and the information about the channels that are
currently free, the channel with highest probability to remain
idle for the duration of the next superframe is selected as the
next working channel (i.e., the working channel for the next

hop).
The rest of the paper is organized as follows. In Section II

we present a brief overview of existing work on working
channel selection. Section III outlines the operation of the
transmission tax-based MAC protocol. Section IV presents the
two selection protocols and discusses their relative advantages.
Section V presents simulation-based performance evaluation
of the protocols, and Section VI concludes the work.

II. RELATED WORK ON SPECTRUM DECISION

Selection of the working channel or, as it is often called,
spectrum decision, has been identified as a crucial piece of
functionality in the operation of cognitive networks [1]. While
the spectrum decision problem has received some attention in
the existing literature, its level of ‘maturity’ is well below that
of the other processes such as spectrum sensing or spectrum
access [12].

In cases where primary user activity patterns are known,
spectrum decision process can be designed to make use of
those patterns. In case of cognitive communications that use
TV White Space [2], [3], [8], such information might be added
to the extensive database of existing TV transmitters. (This is
not defined in DARPA’s documents – but neither it is forbidden
by them.)

Unfortunately, the cases where primary user activity is un-
predictable are much more frequent in practice, and decisions
have to be made on the basis of some statistical model of
spectrum usage [7]. A prerequisite for statistically meaningful
decisions is a certain degree of stationarity of primary user
activity [11], which may or may not hold in a given scenario.

A formal analysis of spectrum availability in the context
of ISM band where primary users are 802.11 transmitters has
been proposed in [5]. This model is then used to develop an
access strategy in which a channel is sensed by a secondary
user and, if idle, utilized with a specified probability [6].
This approach, however, requires that secondary users are
well synchronized, which is not straightforward; moreover,
the approach holds for two nodes only and may not be easy
to extend to a piconet with several such nodes. A stochastic
extension that avoids the need for strict synchronization has
been described in [11].

Spectral estimation is the foundation of the approach de-
scribed in [9], where distinction is made between white and
gray zones in the scanned spectrum: the former contain noise
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Fig. 1. Structure of the piconet superframe.

only, while the latter contain signals with distinct idle periods.
Separating the two, however, is noted to be a difficult task.

Some authors have also described game-theoretic ap-
proaches [4], but in the context of cooperation between pri-
mary and secondary users which is not readily applicable in
most cases.

From this overview, two important observations can be
made. First, in all cases, selection of the best available channel
at any given time necessitates frequent and accurate spectrum
sensing [14]. Sensing may be performed in centralized or
distributed fashion – but the decision about the channel to
use for the next hop must be made in a centralized manner,
and announced this decision to all the nodes in the piconet
in an appropriate manner, e.g., through a beacon frame that
is periodically broadcast. Second, sensing data must be used
to build a statistical model of primary user spectrum usage
through some kind of learning process; this model can then
be used to guide spectrum decisions. These observations form
the foundation for our selection techniques; but let us first
describe the MAC protocol that will be used.

III. TRANSMISSION TAX-BASED MAC PROTOCOL

A number of nodes with cognitive capabilities form a
cognitive piconet through a so-called rendezvous procedure
[17], the details of which are beyond the scope of this paper.
All nodes are assumed to be capable of half-duplex operation.
Any of the nodes with sufficient computational capability can
act as a coordinator, similar to Bluetooth [13]. The time in
each superframe is divided into the following components:
beacon frame, data exchange sub-frame, reporting sub-frame
in which sensing results are sent back to the coordinator, and
reservation sub-frame in which bandwidth requests and other
administrative frames are sent. Beacon frames contain band-
width allocation decisions, information about nodes joining
the piconet or leaving it, network allocation vector outlining
the boundaries of sub-frames in the next superframe, and the
announcements about the next-hop channel – i.e., the channel
which will be used for the next superframe. , a variable number
of fixed-duration time slots. (Each superframe may take place
on a different channel according to the hopping sequence
dynamically selected by the coordinator.) The structure of
the superframe is schematically shown in Fig. 1. Successive
superframes are separates by a guard interval of sufficient
duration which allows all nodes to hop to the next channel.

The label transmission tax stems from the fact that a node,
once it request and receive bandwidth allocation to transmit a
packet – and then successfully transmits it – is obliged to per-
form the sensing duty for a specified number of superframes.

It reports the results in each of the superframes during which
it performs the sensing duty. Thus transmission is effectively
paid for by sensing; by adjusting the amount of transmission
tax (i.e., the number of superframes for sensing per transmitted
packet or packet burst), the coordinator is able to maintain
a steady influx of accurate sensing information in a timely
fashion [18]. Part of the sensing report is the information about
the time of sensing, which may be recorded at the desired
level of granularity. In the simplest case, the coordinator will
just record the superframe in which it received the report;
alternatively, the node may report (and the coordinator will
record) the nearest time slot in which the sensing actually
took place. The necessary granularity level will be dictated
by the dynamics of primary user activity, but the algorithms
described below can use any suitable level without a problem.

It is worth noting that, unlike transmission, reception is not
actually taxed. Namely, nodes that are to receive packets can
temporarily suspend the sensing during that superframe, and
resume it in the next one. Thus sensing is preempted by packet
reception. However, a node can request bandwidth for a new
packet only upon completing its sensing duty related to the
previous transmission.

IV. CHANNEL SELECTION ALGORITHMS

Let us now describe the working channel selection algo-
rithms in more detail. We assume that the sensing nodes
perform sensing for a number of channels in each of the
superframes which they spend doing sensing. We also assume
that sensing reports are truthful; while reporting may be
blocked by noise and interference, we can easily account
for this through reducing the number of sensing reports per
each superframe. We assume that the coordinator records the
results of the sensing and, thus maintains a map of busy and
idle channels. For each channel, the coordinator also records
the last time at which the channel has turned idle or busy,
although this last piece of information is not actually used in
the algorithms that follow.

A. Algorithm 1: Selecting the most recently idle channel

This is the simpler algorithm of the two; it actually consists
of selecting an idle channel that has most recently turned idle.
The assumption is that the channel that has most recently
turned idle has the highest probability of remaining idle during
the next superframe. If there are several such channels (a
scenario which is more likely if the coordinator just records the
superframe, but still possible even at finer time granularity),
the coordinator will choose one of the channels at random.

B. Algorithm 2: Selecting the most likely idle channel

The second algorithm attempts to estimate the probability
that the channels which are currently idle will remain idle
throughout the next superframe. To this end, the coordinator
builds a histogram of idle periods for each channel, using the
recorded times when the channel turns idle or busy. These
values are then used to fill in histogram bins. The histogram
is constructed according to the following constraints.



• The width of each bin is determined as the shortest
possible duration of the superframe.

• The number of bins in the histogram may be determined
on the basis of the following two factors. First, the range
of values for the duration of the superframe [18], since
the channel must remain idle for the duration of the next
superframe – which is known at the time the decision
about the channel is to be made. Second, the statistics of
the channel idle period, since the last ending of channel
activity may have occurred some time ago.

In this manner, the values in those bins correspond to the
probability that the channel will remain idle for the time
interval that corresponds to the appropriate bin. They are still
not probabilities, as their sum is not equal to one. To obtain
actual probabilities, bin values must be normalized with the
sum of all bins prior to algorithm execution.

Now, for each channel that is currently idle, say i, the
coordinator calculates the index of the bin that corresponds
to the time interval from the last time when the channel has
turned idle until the end of the next superframe. Since different
channels may have turned idle at different times, and thus the
corresponding bin numbers will differ; let this bin be labeled
as j(i). The coordinator then finds the next channel as the one
with the maximum probability in the bin j(i). As before, in
(the much less likely) case there are several such channels,
the decision is made by random choice. Note that the channel
selection will actually depend on the calculated duration of
the next superframe, unlike in algorithm 1.

C. Reference algorithm

The yardstick against which we will measure the perfor-
mance of both algorithms is the simple random selection
algorithm. In this approach, the next working channel is
selected through random choice from the set of channels that
are currently assumed to be idle according to the information
in the channel map. It is worth noting that the set of idle
channels may be empty. This may be the actual state of
the medium, or may be just the result of the inertia of the
sensing process and the resulting errors [14]. In this case, the
piconet may attempt recovery, or simply decide to repeat the
piconet formation process; detailed analysis of both processes
is beyond the scope of the present paper.

D. Performance indicators: collision probability

The main performance indicators are the probability of
collision with the primary source. Two types of collisions are
possible:

• Type 1 collision occurs when the coordinator selects
a channel it thinks is idle, but is in fact busy. The
probability of this event is, in fact, the function of the
channel selection algorithm but also of the accuracy of
the sensing process (or lack thereof).

• Type 2 collision occurs when the channel becomes busy
during the superframe, in which case the superframe will
be damaged and the piconet must attempt recovery, i.e.,
it has to switch to another channel in the hope it is free.

V. EXPERIMENTAL EVALUATION

To evaluate the performance impact of channel selection
algorithms, we have built a simulator of the cognitive piconet
using the object-oriented, Petri net-based simulation engine
Artifex by RSoftDesign, Inc. [19]. The simulator implements
the transmission tax-based MAC protocol with integrated
sensing and the aforementioned channel selection algorithms.
Unless otherwise specified, all experiments were performed
with the following parameter values:

• the piconet has 16 nodes and the coordinator;
• the working set of channels contains 11 channels;
• each channel contains an independent primary source

with random activity with Erlang-distributed ON (busy)
and OFF (idle) intervals; the mean period of primary user
activity is 1000 time units and the mean ratio of active
period vs. total period (i.e., activity factor or duty cycle)
is 0.5;

• each node has a traffic generator which generates
Poisson-distributed single packet traffic at a rate of 0.002
packets per node per time unit;

• transmission tax was set to 4 (expressed as the number
of superframes of sensing duty per each packet or group
of packets sent);

• superframe duration was fixed at 100 time units, 15 of
which were set aside for administrative superframes.

Our main performance indicators are the probability of type
1 and type 2 collisions, as defined above.

A. Homogeneous Poisson-distributed primary users

Our first experiments consisted of running the three algo-
rithms with exponentially distributed busy and idle periods of
primary sources, which corresponds to the shape parameter
of Erlang distribution of k = 1. All primary sources use
the same probability distribution, therefore we refer to this
scenario as homogeneous. The results are shown in Fig. 2,
with the number of channels, primary user activity factor, and
primary user period as independent variables, respectively. The
three curves overlap to the point of being indistinguishable
in Figs. 2(c) or Fig. 2(f), which is due to the memoryless
distribution that makes all channels exhibit equal probability
of going busy, hence prediction does not bring any benefit
whatsoever. We also observe that the longer idle periods
lead to lower collision probability, regardless of whether they
are cause by longer total activity period or lower values of
the activity factor. However, collision probability is virtually
independent of the number of channels.

B. The impact of shape parameter k

In our second experiment, we have kept the number of
channels, the primary user activity period and activity factor
as constants, and varied the shape parameter k of the proba-
bility distribution of primary user busy and idle periods. The
resulting collision probabilities are shown in Fig. 3. As can be
expected, the performance of the random selection algorithm
is unaffected by the change in k. However, the other two
algorithms behave rather differently: the most recently idle
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(e) Probability of type 2 collisions, variable primary
user activity factor.
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(f) Probability of type 2 collisions, variable primary
user activity period.

Fig. 2. Performance of working channel selection algorithms under homogeneous primary user activity. Primary user period is 1000, primary user activity
factor is 0.5, and the number of channels is 11, unless explicitly designated as variable.

algorithm (algorithm 1) exhibits a noticeable reduction in both
types of collision probability, which is to be expected as the
Erlang probability distribution for k ≥ 2 is not memoryless
any more. As a result, the basic assumption of the algorithm,
namely, that the channel that has most recently turned idle
has the highest probability of remaining idle during the next
superframe, actually holds. At the same time, the most likely
idle algorithm (algorithm 2) exhibits a slight increase of both
types of collision probability, which is not expected, but may
be attributed to the shape of the Erlang probability distribution.
Namely, the presence of the peak may ‘trick’ algorithm 2 into
choosing a channel which is already idle for a longer (and
sometimes much longer) time, so its basic premise may not
hold in this case. Yet the increase is not too big – it’s about
half the amount of the decrease exhibited by algorithm 1.

C. Heterogeneous primary users – case where only the activity
factor is variable

We have also investigated the case in which primary users
have heterogeneous parameters, namely their activity factors
are randomly chosen in the range from 0.1 to 0.9 while
the mean activity period and the number of channels were
independent variables. The shape factor of Erlang distribution
was kept constant at k = 3. The resulting diagrams are shown
in Fig. 4. In this case, algorithm 2 generally performs better

than algorithm 1, although the collision probabilities appear
to converge, esp. in case of variable mean activity period.
This may be explained as follows: due to the heterogeneity of
primary user activity factors, algorithm 2 performs much better
than algorithm 1 at low values of mean activity period, where
idle periods are harder to find. However, its relative advantage
is offset by the ‘peakiness’ of the Erlang distribution with the
increase in mean activity period or the number of channels.

D. Heterogeneous primary users – case where both the period
and activity factor are variable

In our fourth and final experiment, both the mean period
and the activity factor of primary user activity were selected
as random values in the range 500 to 3000 time units for the
former, and from 0.1 to 0.9 for the latter. The results are shown
in Fig. 5; they clearly demonstrate the advantage of algorithm
2 over algorithm 1.

VI. CONCLUSIONS AND FUTURE WORK

Overall, the results se results confirm our hypothesis that
some knowledge of primary user activity patterns can reduce
the probability that a cognitive piconet will experience col-
lisions with primary user activity. Apparently algorithm 2,
which relies on selection of the channel that is most likely to
remain idle on the basis of estimated probability distribution
of idle periods on each channel, has an advantage over
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Fig. 3. Performance of working channel selection algorithms under variable shape parameter k. Primary user period is 1000, primary user activity factor is
0.5, and the number of channels is 11.
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Fig. 4. Performance of working channel selection algorithms (heterogeneous primary users). The activity factor is randomly selected between 0.1 and 0.9,
while the number of primary channels is 11. The shape factor of Erlang distribution is k = 3.

algorithm 1 where the working channel is selected amongst
those that have most recently turned idle. However, the case
of homogeneous primary sources shows that the advantage
is not unqualified, and there may be cases where algorithm
1 performs better. Obviously the relative range in which one
algorithm is better than the other and vice-versa should be
examined in more detail.

Overall, the work reported here is but a start, and improved
channel selection algorithms should be sought. In particular,
the selection algorithm should look at the entire shape of

the histogram that serves as a proxy for the probability
distribution, rather than just at specific values. Also, the mean
activity period of primary users should be taken into account
and possible non-stationarity of primary user activity should
be accounted for, perhaps through windowing or some other
way to obtain a moving average of histogram values.
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Fig. 5. Performance of working channel selection algorithms (heterogeneous primary users). The activity period is randomly selected between 500 and 3000
time slots, activity factor is randomly selected between 0.1 and 0.9, and the number of channels is 11. The shape factor of Erlang distribution is k = 3.
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