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Abstract—Mobile devices may offload their applications to a
virtual machine running on a cloud host. This application may
fork new tasks which require virtual machines of their own on
the same physical machine. Achieving satisfactory performance
level in such a scenario requires flexible resource allocation
mechanisms in the cloud data center. In this paper we present
two such mechanisms which use prioritization: one in which
forked tasks are given full priority over newly arrived tasks, and
another in which a threshold is established to control the priority
so that full priority is given to the forked tasks if their number
exceeds a predefined threshold. We analyze the performance
of both mechanisms using a Markovian multiserver queueing
system with two priority levels to model the resource allocation
process, and a multi-dimensional Markov system based on a
Birth-Death queueing system with finite population, to model
virtual machine provisioning. Our performance results indicate
that the threshold-based priority scheme not only performs
better, but can also be tuned to achieve the desired performance
level.

Index Terms—performance; emerging technologies; mobile
cloud computing.

I. INTRODUCTION

The tension between resource-hungry applications such
as face recognition, natural language processing, interactive
gaming, and augmented reality, and resource- and energy-
constrained mobile devices poses a significant challenge for
current and future mobile platform development. Mobile cloud
computing, where mobile devices can offload some com-
putational jobs to the cloud is envisioned as a promising
approach to address such a challenge [1]. While stationary
clouds incur relatively long setup times, are leased for long
time periods, and enjoy uninterrupted network connectivity,
requests offloaded from mobile devices usually require quick
response, may be infrequent, and are subject to variable
network connectivity [2]. Also, the volume of workload to
be offloaded may not be known in advance since many of the
offload requests are the consequence of decisions made by the
(generally unpredictable) human user of the device.

In this work, we address the elasticity in mobile cloud
computing with a solution that allocates resources for on-
demand job requests in the mobile clouds. We assume that the
decision to offload has been made and focus on the allocation
of cloud resources to the offloaded applications sent to a
cloud data center. Namely, jobs offloaded by mobile devices
are executed by virtual machines (VMs) hosted on physical
machines (PMs) in a mobile cloud. During their lifetime, these
jobs (also referred to as primary tasks) can fork new, secondary
tasks; a job is completed when all the forked tasks complete

their service. As secondary tasks need to communicate with
the primary task as well as with each other, their allocated
VMs should preferably be hosted on the same PM as the parent
task’s VM. However, the host PM may not have the resources
required to execute the secondary task, which is then queued
as ‘overflow’ tasks in order to find a new ‘home’.

The proposed solution manages these two types of tasks as
two service classes using a queueing model based on inte-
gration of multi-dimensional Markov system and Birth-Death
queueing systems with multiple servers and finite population
(M/M/L//L), inspired by the Birth-Death queueing systems
developed in [3]. We consider soft bounds on completion times
and limit the number of secondary tasks in order to prevent
resource hogging. We also consider priority differentiation be-
tween the tasks, which is implemented using two mechanisms.
In the first mechanism, overflow tasks are always serviced
before any regular tasks, be they primary or secondary. In the
second, we impose a threshold for the number of overflow
tasks in the input queue. As long as the number of overflow
tasks is below the threshold, a probabilistic selection similar to
Weighted Fair Queueing [4] is used; otherwise, only overflow
tasks are serviced until their number drops below the threshold.

The paper is organized as follows: in Section II, we survey
existing work on resource allocation in mobile cloud com-
puting, but also some relevant research results pertaining to
stationary clouds. Section III describes the proposed resource
allocation module while Section IV describes the virtual ma-
chine provisioning module and integration of the two modules.
Section V discusses the performance of our system and the
related outcomes. Section VI includes the implementation
discussions. Section VII concludes the paper and discusses
some directions for future work.

II. RELATED WORK

Several research studies have proposed solutions to ad-
dress the issues of computational power and battery lifetime
of mobile devices by offloading computing tasks to cloud.
CloneCloud [5] extends the concept of VM-based clone cloud
offloading from LAN surrogates to cloud servers, and in-
troduces an OS supporting VM migration. MAUI [6] has
provided method-level code offloading based on the .NET
framework. MAUI aimed to optimize energy consumption
of a mobile device by estimation and evaluating the trade-
off between the energy consumed by local processing versus
the transmission of code and data for cloud offloading. A
framework for moving smartphone application processing to



the cloud center using the concept of smartphone virtualization
was introduced in ThinkAir [7]; it addresses lack of scalability
by creating VM of a complete smartphone system on the
cloud. CMcloud [8] is a mobile-to-cloud offloading platform
which attempts to minimize both the server costs and the
user service fee by offloading as many mobile applications
to a single server as possible, while trying to satisfy the
target performance of all applications. To achieve such goals,
CMcloud exploited architecture performance modeling and
server migration techniques. In Properly Offloading Mobile
Applications to Clouds (POMAC) framework [9], other than
offloading decision making technique, an offloading mech-
anism was designed through method interception at Dalvik
virtual machine level to allow mobile applications to offload
their computation intensive methods.

In most of the works related to resource allocation in mobile
cloud computing, there are some trade-offs among power
consumption, QoS parameters and costs. These objectives are
usually dependent on cloud resources, applications profiles
and network parameters. COSMOS (Computation Offloading
as a Service for Mobile Devices) system [2] received mobile
user computation offload demands and allocated them to a
shared set of compute resources that was dynamically acquired
(through leases) from a commercial cloud service provider.

The partitioning of elastic mobile datastream applications
was formulated in [10] as on optimization problem by mini-
mizing the cost function which is combination of communi-
cation energy and computation energy.

In [11], a model has been built to incorporate pertinent
characteristics of the workflow software and network hardware
devices. Then, the objective functions have been constructed
which guide the offloading decisions. A heuristic algorithm
was presented that produced offloading plans according to
these objective functions and their variations.

In [12], offloading requests were sent in bundles so that,
the period of time that the network interface stays in the
high-power state can be reduced. Two online algorithms were
presented, collectively referred to as Ready, Set, Go (RSG),
that make near-optimal decisions on how offloading requests
from multiple applications are to be best coalesced.

In the work presented in [13], in order to realize resource
allocation, authors have estimated a cost model for each VM
running on a server in the cloud and they have calculated the
sum of the costs required to run the physical resources required
on the server.

In another approach to connecting mobile devices to cloud
servers in [14], authors have proposed Hermes, a polynomial
time approximation scheme (FPTAS) algorithm to solve the
latency problem.

The model proposed in [15] is based on the wireless
network cloud (WNC) concept and a multi-objective linear
optimization approach using an event-based finite state model
and dynamic constraint programming method has been used to
determine the appropriate transmission power, process power,
cloud offloading and optimum QoS profiles.

In [16], a study on virtual machine deployment was pre-
sented together with an evaluation of the impact of VM
deployment and management for application processing by

analyzing the parameters such as VM deployment and exe-
cution time of applications. The work presented in [17], has
analyzed the impact of performance metrics on the execution
of applications (cloudlets).

The work in [18] has presented a task scheduling and
resource allocation scheme which used the continually updated
data from the loosely federated General Packet Radio Service
(GPRS) to automatically select appropriate mobile nodes to
participate in forming clouds.

Resource provisioning in stationary cloud computing has
been extensively studied. By taking advantage of Lyapunov
optimization techniques, an online decision algorithm was
designed for request distribution which achieves the average
response time arbitrarily close to the theoretically optimum
and controls the outsourcing cost based on a given budget
[19].

The work in [20] has proposed two different mechanisms,
which reflect two different classical economic approaches
for fairly allocating resources: the Nash Bargaining (NB)
mechanism and the Lexicographically Max-Min Fair (LMMF)
mechanism.

The work presented in [21] has proposed a randomized
auction mechanism based on an application of smoothed anal-
ysis and randomized reduction, for dynamic VM provisioning
(pricing tailor-made VMs on the spot) and pricing in geo-
distributed cloud data centers. An online procurement auction
mechanism to address the resource pooling issue in cloud
storage systems was presented in [22].

We note that Markov models with multiple priority classes
have been used in different fields. For example, a Markov
chain flow decomposition for a two-class priority queue in
presented in [26]. Also, threshold-based priorities have been
utilized in the development of Markov models. For instance, in
[27], a multi-server queueing system with two priority classes
was used with a threshold defined according to number of
servers in the system. In another similar approach, a threshold
based Markov chain system has been deployed to model elastic
and inelastic traffic flows in TCP-friendly admission control;
the threshold was defined according to some inelastic flow
parameters [28].

Similar to the work presented in this paper, some of the
cloud resource allocation solutions have used queueing theory:
e.g., authors in [23] proposed a performance model for systems
with dynamic service demand where job size in number of
tasks varies during service. It is assumed that the size of a
job in number of tasks varies randomly during the time that
job is in the system. The arrival of the jobs to the system
is according to a Poisson process with parameter A\ jobs/sec.
Also, it is assumed that a new arriving job to the system
initially demands service for a single task. A job generates
random number of tasks according to a Poisson process with
parameter « task/job/sec during its service time in the system.
It is assumed that each task requires a VM for its execution
and task execution times are exponentially distributed. Service
time of a job begins with its arrival to the system and it is
completed when there are no more tasks belonging to that job
left in the system. In this model, a job has a general service
time distribution.
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Fig. 1. Overview of the system model.

In [24] a resource allocation model for IaaS cloud datacen-
ters has been presented which is based on cloud federation
mechanism. The arrival of the jobs is either according to a
homogeneous Poisson process or a Markov Modulated Poisson
Process (MMPP) which allows time variations in the arrival
rate. Also, each job requires a single VM to complete its
service; service times are exponentially distributed and mean
service time is a function of the number of busy VMs on
a server. The system has a finite queue, which is managed
according to the FCFS discipline. The system queue has a
finite size and once it is full, further requests are rejected. A
federation threshold is defined on the number of jobs waiting
in this queue; when the limit of threshold is reached, jobs will
be redirected to another queue called upload queue. The jobs
waiting in upload queue will be transferred to the other cloud
datacenters participating in the cloud federation. Jobs in this
solution include a single task and the model is not suitable for
on-demand job requests as their size varies during the service
time.

The cloud resource allocation model suggested in [25]
includes fault recovery. In this model, arrival of jobs is
according to a general stochastic process and each job has
random number of tasks. Each task requires a single VM and
task service times are exponentially distributed, which results
in independent task completion times. The system has a finite
queue and each task of a job takes a position in the queue.
A job is rejected if all of its tasks are not accepted in the
system. It is assumed that all the tasks in a job will start to
get service simultaneously. The system has been modeled as a
GIXI/M/S/N queue where N corresponds to the maximum
number of allowed tasks in the system. Also, the VM failure
rate in this model is a Poisson process and VM recovery times
are exponentially distributed. This model is not appropriate for
on-demand job requests in mobile cloud system as all the tasks
in a job are supposed to start getting service at the same time.

III. RESOURCE ALLOCATION

Fig. 1 provides a schematic overview of the proposed
solution. We assume that jobs offloaded from a mobile device
arrive according to a Poisson process with arrival rate \. When
the job request reaches the data center, it is queued in the new
task queue. Tasks which can’t be admitted due to a full queue
are blocked.

Once the task reaches the head of the queue, the resource
allocation module (RAM) attempts to find a PM that can
accommodate the task — i.e., a single VM equipped with
appropriate OS and applications, running on a PM that has
sufficient spare capacity. If such a PM is found, the appropriate
VM will be instantiated with the queued task; otherwise, the
task is rejected. Let 1/8 denote the mean look up time to
find appropriate PM in the server pool. RAM is modeled as
a multi-dimensional Continuous Time Markov chain (CTMC)
presented in Figs. 3 and 4; more detailed explanation of this
chain is given below.

If the computational resources of the VM allocated to the
primary task are insufficient, additional VMs are forked to
fulfill the requirements. Forking creates a secondary VM,
which is an independently executing clone of the primary
VM [30]. Secondary or forked tasks are queued and processed
similar to the primary tasks, but with an important constraint:
namely, that all communications with the mobile device must
be routed through the primary VM. This constraint has two
consequences in practice: first, all VMs running secondary
tasks must end before the VM running the parent primary
task. Second, secondary VMs should be instantiated on the
same PM that host the VM running the parent task which
facilitates communication between them.

However, if the PM running the parent (primary) VM has
no spare capacity for a secondary one, the secondary task will
not be immediately blocked. Instead, it will be returned to the
RAM as an overflow task; these tasks are routed through a
dedicated queue, separately from the newly arrived primary
tasks and first-time secondary tasks. We note that an overflow
task can still be blocked if the required computational capacity
can’t be found when that task reached the head of the overflow
queue.

Using separate queues allows us to prioritize secondary and,
in particular, overflow tasks. The objective is twofold: first,
to reduce the wait time for mobile applications; second, to
minimize the probability that an offloaded job will have to be
aborted because it is unable to fork the required secondary
task. Both of these goals, in fact, strive to increase user sat-
isfaction. A similar scenario is observed in cellular networks,
where handover calls, which are continuations of existing calls,
are always given priority over new calls [31].

Prioritization is implemented in two ways. In the simpler
approach, hereafter referred to as full priority scheme, priority
is always given to overflow tasks. In this scheme, which
is schematically shown in Fig. 2(a), primary and first-time
secondary task requests in the new arrivals queue will not
get service as long as there is a task waiting in the overflow
queue. However, this may lead to unnecessary penalization
of tasks in the new arrivals queue, which is why we have
also considered another approach, hereafter referred to as
threshold-based priority scheme. In this scheme a threshold is
set in the overflow queue. As long as the number of overflow
tasks in the queue, N,,, is not above the threshold, 7;., i.e.,
Ny, < T, as shown in Fig. 2(b), overflow tasks and new
incoming tasks get service according to the probabilities of
P, and Py, respectively, similar to Weighted Fair Queueing
(WFQ) method [4]. However, once the number of tasks in the
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Fig. 2. The service order in the dual input queue system.

overflow queue exceeds the threshold, i.e., when Ny, > T,.,
the system exclusively services overflow tasks, as in the first
approach, until the number of tasks in the overflow queue
drops below the threshold. In both cases, tasks from either
queue will be serviced in FCFS order. The computational
details of P, and Py are presented in Section III-B.

We will now describe the queueing model for both schemes
in more detail, using the parameters listed in Table 1.

A. Resource allocation with full priority of overflow tasks

Resource allocation in case overflow tasks have full priority,
i.e., new arrival tasks will not be served as long as there
is an overflow task in the appropriate queue, is modeled as
a Markovian multiserver queueing system with two priority
levels. In this model, illustrated in Fig. 3, states are labeled

s (4,4, k) where ¢ and j indicate the number of tasks in the
overflow and new arrivals queue, respectively, and k denotes
the admission mode: A’ means that a task is accepted while

R, CRpN’) means that an overflow (new) task is rejected.
The length of the queue buffer is L,.

New tasks arrive with rate of A\, while overflow tasks arrive
at a rate of O,. If this task is accepted, the system moves to the
state (0,7 —1, A)) at a rate of P, where P; is the probability
of finding appropriate VM in the Virtual Machine provisioning
Module (VMM), which we will derive in Section IV below,
and 1/3 is the look-up time needed to find a suitable PM.
Otherwise, the system moves to (0,7 + 1, A) which means
the new task is added to the waiting new tasks. As overflow

TABLE I
PARAMETER DEFINITION.

Parameter  Description

N Number of servers

Now Number of waiting overflow tasks in RAM
m Number of available VMs on the PM
A Incoming task rate

1/8 Mean look up time to find a PM

1/~ Mean clean up time in RAM

Ai Primary task arrival rate into the PMs

Aci Secondary task generation rate in a job

o Mean service time of primary tasks

d Mean service time of secondary tasks

p Offered load

Ly Size of queues in RAM

L Maximum number of secondary tasks in a job

c Minimum number of jobs accommodable on a PM
O; Incoming overflow rate from the RAM to VMM
O, Outgoing overflow rate from the VMM to RAM
T Threshold of number of waiting overflow tasks in RAM
P, Probability of giving service to the overflow tasks
Pn Probability of giving service to the new incoming tasks
Ps Successful provisioning probability
Ppy Blocking probability due to full RAM
Py, Rejection probability due insufficient resources
P Total rejection probability
@ Basic instantiation/ Full transition rate
Ox Partial transition rate

tasks have absolute priority, new arrivals — primary as well as
first-time secondary ones — can get service only if there are
no overflow tasks in the queue, which corresponds to j = 0,
i.e., the first row of the model.

If the queue is full, a new task cannot be admitted and the
system moves from state (0, Ly, A) to (0, Lq, Ry) at a rate of
B(1 — Ps). The target state (0, Ly, Ry) denotes blocking of a
new arrival task; it is shown shaded in the top right corner of
Fig. 3. When the task is rejected, the system moves back to
(0, Lq, A) at a clean-up rate of v = 105.

Overflow tasks arrive at a rate of O,: if such a task gets
service (and they always have priority), the system moves to
the first neighboring state up with a rate of P,/3; otherwise, the
task is queued and the system moves to the next state below
the current state. Yet overflow tasks can also be rejected if the
queue is full, which is represented by the additional shaded
states below the bottom line with states (Lg,j, A). The rate
of rejection is 3(1 — Ps), as is the case with new arrivals; the
system goes back to (L, j, A) at a clean-up rate of ~.

A task may be blocked due to a full queue; it occurs with
the probability

Ly—1
Pyg= > m(i,Ly A) +ZZ Lg, j,k) + (0, Lg, Ry)
=0 j=0 k€S2
(D

where S; = {A, R, }.
A task can also be rejected due to insufficient resources with



Fig. 3. Markovian model of resource allocation in case overflow tasks have full priority.

the probability
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The total rejection probability is the sum of the two:
Prj:qu+Pbr 3)

B. Resource allocation with threshold-based priority of over-
flow tasks

Resource allocation in case of threshold-based priority of
overflow tasks over new arrivals is modeled with a two-
dimensional Markovian model illustrated in Fig. 4. The model
behaves in a manner similar to the previous one, but with
an important distinction: namely, acceptance depends on the
length of the overflow task queue. (As before, both new
arrival and overflow queue can accommodate up to L, tasks.)
If the overflow queue contains more than 7, tasks, only
overflow tasks are serviced as long as the queue length is
above the threshold. If the overflow queue contains 7, or
fewer tasks, tasks to be accepted are taken from one or
the other queue: new tasks are accepted with a probability
of Py = 575~ while overflow tasks are accepted with a
probability P, = 1 — Py = %60, where A and O, denote
arrival rates for new and overflow tasks, respectively.

As before, shaded states outside of the two-dimensional
chain denote rejection states pertaining to new arrivals (in the
top right) and overflow tasks (at the bottom).

In this case, task blocking probability is

T, Ly
Py =3 Y wli, LK)+ Y w(Lgj k) (@)

i=0 k€S, j=0 k€S,

where S = {4, Ry} and S2 = {A, R,}, and task rejection
probability is

Ty

" B(1— PyP,) .

PbT:Ziﬁ( 7N )ﬂ(z,Lq,RN)
1=1

L
. 1- Ps .
+> PP 1,5, R,) (5)
=17

Total rejection probability is, then, equal to their sum: P,.; =
qu + Py,

IV. VIRTUAL MACHINE PROVISIONING

Virtual Machine provisioning Module (VMM) manages
instantiation, provisioning and deployment of VMs. Fig. 5
shows a multi-dimensional Continuous Time Markov chain
(CTMC) that models the VMM within a PM. States are labeled
as (i, 7, k) where 7 indicates the tasks waiting to be serviced,
while 7 and k denote the number of jobs (i.e., primary
tasks) and secondary tasks currently in service, respectively.
O; denotes the incoming overflow rate coming in from the
RAM, while O, represents the rate of tasks that can’t be
accommodated in the PM that will be returned to the RAM as
overflow. The task arrival rate to each PM, );, can be obtained
as

A1 — Pyy)

=S

(6)
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Fig. 4. Markovian model of resource allocation in case overflow tasks have threshold-based priority.

where P, is the blocking probability obtained from the RAM
(which will be explained below) and NV is the number of PMs
in the system.

In Fig. 5, the main plane of the multi-dimensional Markov
model illustrates the waiting queues and serving status of
primary VMs. Service times for both primary and secondary
tasks are exponentially distributed with mean values of p and
d, respectively, which includes the time needed for forking.
The shaded states represent secondary task queues which can
have up to L tasks. Secondary tasks are generated with a rate
of A\.;; they are modeled as Birth-Death queueing systems with
finite population of L customers and L servers (M /M/L//L).
This approach is inspired by the Birth-Death queueing systems
with finite population presented in [3]. In this case, the
stationary probability of kth state of the secondary task queue
can be obtained as

(I

where pg is
L k
Z Aci L 1
k=0

R

by replacing the value of pg in equation 7, py, is calculated as
( Aed ) k (L)

d k
e 0sksiL ©)
0 otherwise

Pk =

Mean number of tasks in the secondary task queue is

L
k Aci kL
M_ZL:kpk_kZ_:O (d) (k>: L/\m/d
o (1—}—)\62‘/(1)1/ 1+)\ci/d

(10)

Assuming the number of tasks in an offloaded job is limited
to one primary and L secondary ones, and that each PM can
accommodate up to m VMs, we have to make sure that m > L
so that at least one job (i.e., its primary task and all of its
secondary tasks) can be accommodated on a single PM. In fact,
a PM can accommodate at least ¢ = LLHJ jobs. However,

not all jobs will have the maximum number of L + 1 tasks;



Fig. 5. Virtual machine provisioning model of a PM with the ability to accept maximum three jobs (see text for details).

therefore, if the number of jobs is limited to ¢, chances are
that some of the VMs on the PM will be underused, so we
can conservatively assume that a PM can accommodate ¢ + §
job requests.

Assuming m = 10 and L = 4, we obtain ¢ = [¥] = 2,
and the number of jobs allowed on a PM is ¢ + § = 3; this
last number is used in the provisioning module illustrated in
Fig. 5. However, when the job number reaches c, the transition
rate of moving to serve the next job changes. This transition
rate is @ as long as the number of current jobs (i.e., primary
tasks) on a PM is below c. When the limit of c jobs is reached,
the transition rate changes to
where 7 is the number of jobs waiting for service, while x
indicates the number of serviced jobs above c; Pt; . is the
transition coefficient which can be obtained as the ratio of
the sum of steady-state probabilities where the length of each
secondary queue is larger than NN, and the sum of steady-
state probabilities for full length of each secondary queue. As
the average number of expected secondary tasks in a single
secondary queue N; was calculated in (10), the transition
coefficient is

(i, jn, k)

Pt;, = (12)

I} Mh lé‘Mh

-
=,
-
> 3wk

where ¢ + x is the number of jobs in service and ¢ is the
number of jobs waiting for service.

Probability of overflow, i.e.,
deployed on the PM, is

that a task request cannot be

L ctg
Pra=p(Lg,0,0)+ > Y p(Lg,j, k Z > P, (13)
k=1 j=1 =0 yed

where p(i, 7, k) indicates the steady-state probability of the
corresponding state and P, is a member of ®, the set of
products of probabilities of states corresponding to secondary
queues for which the sum of the corresponding secondary
VMs exceeds the capacity of secondary VMs on a PM. The
probability that the total number of secondary VMs in a
PM exceeds the available number of VMs is a combinatorial
probability which can be computed as a sum of products in
(13). ® is represented as

ct+5 ct+5

11 p(@jz,kz)‘ Y ki>m—(c+ g)
=1 =1

(14)

where m — (¢ + §) denotes the number of allowed secondary
VMs on a PM.

Then, probability of successful provisioning on a PM is
Py=1-PJ (15)

Finally, the overflow rate generated in a PM is derived from
the probability that a task is blocked due to lack of resources,

which may be obtained analogously to the Erlang B formula
in a truncated system consisting of two independent queues in



a multi-dimensional Markov system [32]:
Oi/m)+E
(c+5)!
ct§m—(ct+5 ) )
22 (Z 2 /i CQei/d)i
i=0 j

il j!
Jj=0 ’

()\ci/d)m*(CJr%)
[m—(c+35)]!

Oo = (16)

V. PERFORMANCE EVALUATION
A. Practical considerations

The analytical model has been solved using Maple 16 from
Maplesoft Inc. [29].

To evaluate the performance of the proposed mobile cloud
system, we have solved the model described above in a number
of different scenarios. As presented above, the overall model
consists of two interactive stochastic modules which are solved
as follows.

We assume that all the transition rates in the module are
equal to ¢ and then solve the model to obtain the steady-
state probability for all the states and overflow rate. Then, we
calculate the Pt; . for every level beyond c jobs in the system;
according to these new transition rates, we solve the model
again and compute the new values of steady-state probability
of all the states. Using these values, we can calculate Ps. As
the overflow rate is independent of steady-state probabilities,
it is not needed to calculate it again. This procedure is shown
as pseudo-code in Algorithm 1.

Algorithm 1 First Time Solving of VMM Module
1: Assume all transition rates equal to ¢ and solve VMM;
2: Compute outgoing overflow rate, O,;
3: Calculate Pt;, coefficients for all states 7 and levels x;
4: Solve VMM again with new transition rates ¢ and ¢; );
5: Calculate P, with new values;

The successful provisioning probability Ps and the overflow
rate O, obtained in this manner are used as input parameters to
solve the RAM module. It computes the task blocking proba-
bility, P4, which is the input parameter to VMM module. The
overall model consists of two interactive stochastic modules
The associated pseudocode is shown in Algorithm 2. Iteration
ends when the difference between the values of probabilities in
successive iterations drops below a predefined threshold (we
have used A = 107%). Note that transition rates are obtained
only once, in the first pass of the VMM.

B. Task blocking probability

In the first scenario, we have varied the offered load: first,
by keeping mean task service time y fixed while varying mean
task arrival rate \; and second, by varying mean task service
rate at fixed mean task arrival rate. The offered load was
calculated as p = %w’ where N = 100 is the total number
of PMs in the system, each of which had up to m = 10 VMs.
The queue capacity was set to L, = 50 for both queues, while
the threshold in the overflow queue was set to 7;. = 30.

Task blocking probability obtained in this manner is shown
in Figs. 6(a) and 6(b). As expected, probability of task block-
ing increases with the offered load. Overflow tasks are given

Algorithm 2 The Integrated model Algorithm
1: Input: Initial successful provisioning probability and
overflow rate: Pyg, Oy;

2: Output: Blocking probability in the RAM: Py;
3: count = 0; maximum = 30; A =1;
4: qu() +— RAM (PS(),OO());

5. while A > 107% do

6: count «— count +1;

7. Pg<— VMM (Pygo);

8 Oy «— VMM (Pyg);

9: qu1 +<— RAM (PS,OO);

10: A +— |(qu1 — quo)‘;

11: quO — qul;

12:  if count == maximum then

13: break;

14:  end if

15: end while

16: if count == maximum then
17:  return -1;

18: else

19:  return Pyg;

20: end if

priority — and, consequently, easier access to resources — under
both full and threshold-based priority mechanisms, which is
why the blocking probability is much lower for such tasks.
However, when threshold-based priority is applied, blocking
probability for newly arrived tasks is noticeably lower, while
that for overflow tasks is slightly higher. This indicates that
the performance for one or the other type of tasks may be
adjusted within certain limits. In the worst case, less than 4%
of overflow tasks are blocked.

We have also investigated the blocking probability under
fixed offered load but with a variable limit to the number
of secondary tasks L; the results obtained under both service
policies are shown in Fig. 6(c). Note that the case L = 0 corre-
sponds to the absence of secondary tasks which, by extension,
means that there are no overflow tasks; consequently, there
is no corresponding data value for threshold-based priority
curve. Again, new arriving tasks suffer a higher blocking
rate which slowly increases with the task forking limit L;
overflow tasks, on the other hand, are not affected much due to
the dual-queue prioritization mechanism presented above. As
before, threshold-based prioritization provides for much better
performance for new tasks than its full priority counterpart.

We note that a rough upper bound for the probability that
a job does not complete because a forked task is ultimately
blocked may be obtained as the product of mean length of
secondary task queue and probability of overflow, Py, N;.

C. Mean task delay

As for the mean task delays, threshold-based prioritization
offers lower values (i.e., better performance), as can be seen
in Fig. 7. As can be expected, mean delays increase rather
sharply with the offered load. As the system operates well
below saturation, rise in delay values is approximately linear.
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Fig. 6. Task blocking probability.

In case of variable task forking limit, the rise is somewhat
milder, but this may be due to the comparatively low value of
offered load utilized to generate data for Fig. 7(c).

We note that for the same offered load in the both priority
cases, the cloud center generally appears to be more sensitive
to the task arrival rate than to mean service time. This is due to
the overhead imposed by the waiting times and provisioning
processes which increases with the number of tasks but is
independent of the task service time.

D. Utilization and the impact of queue threshold T,

Server utilization is shown in Fig. 8. Under both priori-
tization policies, utilization increases with the offered load.
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Fig. 7. Mean task delays.

As the system does not enter saturation, the rate of rise is
approximately linear in both cases, although some flattening
may be observed at offered load p = 0.7 and above. We note
that utilization is slightly lower when full priority is given to
the overflow tasks, compared to the threshold-based policy,
since the number of overflow tasks is low.

Finally, Fig. 9 shows the effect of queue threshold in
the threshold-based prioritization policy on task blocking
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probability. As the threshold moves closer to the queue size
of L, = 50, value of the blocking probability for new
and overflow tasks are getting closer to each other as the
probability that the threshold will be exceeded diminishes.
Conversely, lower values of the threshold push the system to
behave in a manner closer to that under full priority — in fact,
full priority policy is equivalent to a threshold-based one with
threshold value of 7;. = 0.

Overall, the threshold-based policy allows the cloud oper-
ator to fine-tune the performance of the cloud, as there are
a number of parameters which can be adjusted to provide
the desired values, or ranges thereof, for critical performance
indicators such as mean delay and task blocking.

VI. DISCUSSIONS

There are some points worth mentioning regarding the
implementation of our resource allocation model.

We have assumed that both RAM and VMM modules are
located in the same cloud datacenter.

It is possible to compute the time complexity of our algo-
rithms through a hybrid solution of simulation and analytical
modeling. The Maple engine can be integrated into simulation
environments such as Simulink, NS2 simulator or OPNET
Modeler. The Maple algorithms and data structures can be
exported to the simulation blocks and the time spent in
different steps can be obtained.

Choosing the optimal size of primary and overflow tasks
queues, L, can be complicated. If the size of the queues is
large, tasks will wait for long time in the queues to get served;
whereas, if the size is small, significant number of new and
overflow tasks will get blocked. Blocking the overflow tasks
prevents the completion of the corresponding jobs.

Setting a limit for the maximum number of forked tasks,
L, is also non-trivial. If the chosen limit is low, the running
jobs cannot be completed as they are in need of more VMs for
their secondary tasks. Another drawback is that the PM will
accept more jobs than it can serve appropriately. Generally,
selecting low values of L will incur under-provisioning of the
resources. On the other hand, if the chosen size for L is high,
the secondary task queues in the PM will not get full. Another
pitfall is that defining large secondary task queue will prevent
the PM from accepting more new jobs. Therefore, choosing
high values of L will result in under-utilization in the cloud
system.

The arrival rate can be considered as the components of
Poisson processes with different intensities during the daytime
or nighttime; therefore, the interarrival time of the tasks
in components can be exponential. We have provided the
spectrum of offered load in our scenarios and investigated
the effect of the variability of arrival rate and service time
on the system separately. We have assumed that the service
times in different steps are exponential. Although we are
aware that the service times are in nature sub-exponential,
with assuming them as exponential, we have investigated the
worst case scenario and evaluated the upper bound of the
variables. In this paper, we have considered the general case of
hypoexponential distribution as the service time of the system
and we have decomposed the service time distribution into a
linear combination of structured exponential distributions in
different steps of the model [3].

VII. CONCLUSION AND FUTURE WORK

We have developed two priority schemes for resource al-
location of on-demand job requests in a cloud server pool
based on giving different priorities to the overflow tasks with
or without a predefined threshold. Unlike many of existing
works, our model does not sacrifice the complexity of offload-
ing problem just to make it solvable. Instead, complexity is
addressed through the use of two interacting stochastic models
which are solved through fixed point iteration to achieve any
desired error level.

We have investigated the impact of task arriving rate, service
time and the size of offloaded job on the performance metrics
for both priority schemes. Also, we have evaluated the effect of
threshold location on the threshold-based priority scheme. Our
results confirm that threshold-based priority presents better
system performance than full priority of overflow tasks.

Our next step will be the modification of threshold-based
priority scheme in order to adjust the location of threshold in
the overflow queue. Finding the best location of threshold is an
optimization problem and the position can change according
to the performance metrics, different policies adopted by cloud
computing providers or cloud system’s requirements. Also, we



have observed that the performance metrics do not change
linearly with regard to the offered load, which indicates that
finding the settings of parameter values that would lead to
optimal values of performance metrics is non-trivial.
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