Big Java / Java Concepts Lab 1

Becoming Familiar with your Computer

	1.
	To achieve flexibility, a computer must be programmed to >perform each task. A computer itself is a machine that stores data (numbers, words, pictures), interacts with devices (the monitor screen, the sound system, the printer), and executes programs. Programs are sequences of instructions and decisions that the computer carries out to achieve a task.

What are some examples of computer programs? List program types, not specific names. 


	2.
	Use your operating system to locate the file HelloTester.java and look at its contents. (Here, we assume that the companion code for your text book is installed on your computer.) 

What did you do to find HelloTester.java?


	3.
	Look inside the HelloTester.java file. How did you open the file?


	4.
	The program that you'll be running to write computer programs is your text editor, which sometimes is part of an integrated compiler environment. If you are working in a computer lab, ask your lab guide how to start the editor. If you purchased and installed your own compiler, then follow the vendor's instructions. Go ahead and start the text editor now.

What did you do to start your text editor?


	5.
	Compiling and Running Programs
Frequently in these labs you will be asked to compile a sample program. Below is a copy of a Java program that displays a drawing. Copy and paste it into your compiler's text editor. Save it as Art.java.

/**
    Displays an 'art' drawing
*/             
public class Art 
{
     public static void main(String[] argv)
     {
      String s1 = " *   *   *   *   *   * ";
      String s2 = "   *   *   *   *   *   ";
      String s3 = "__________________________________\\n";
      String s4 = "_________________________________________________________\\n";           

      System.out.print(s4 + s1 + s3 + s2 + s3);       
      System.out.print(s1 + s3 + s2 + s3);       
      System.out.print(s1 + s3 + s2 + s3);       
      System.out.print(s1 + s3 + s2 + s3);       
      System.out.print(s4 + s4 + s4 + s4 + s4);
   }
} 

Describe what you did to create the file Art.java.


	6.
	Once you have typed in (or pasted in) a program, you need to compile it to create an executable file. Again, these steps depend on your compilation environment. Determine the steps for your computer system, then go ahead and compile Art.java.

Describe what you did.


	7.
	Finally, it is time to execute the program. Once again, the steps depend on your computer system.

Describe what you did to execute the program.


	8.
	Describe what happened when the program executed.


Writing Simple Programs

	9.
	Your initial Java programs will be contained entirely in one file. There are some elements that all the programs will share because of the requirements of the Java language. When you build a program, your compiler looks for code of the form: 

public class ClassName 
{ 
    public static void main(String[] args) 
    { 
       /* 
       your work goes here 
    */ 
    } 
} 
The textbook has a program that prints the message Hello, World! on the screen. 

Try changing it to display Hello, Universe!
Type the program into your compiler's editor, compile and test. 

What program did you produce?


Detecting Syntax and Logic Errors

	10.
	There are numerous opportunities for errors in any program, often in places that seem too simple to require close attention. 

What do you think the following program is designed to do? 
public class Cube 
{ 
    public static void main() 
    { 
       double height = 3.0; \\ inches 
       double cubeVolume = height * height * height; 
       double surfaceArea = 8 * height 
       System.out.print("Volume = " 
       System.out.println(cubeVolume); 
       System.out.print("Surface area = ); 
       System.out.println(surfaceArea); 
}


	11.
	Will it work as shown? If not, what problems can you identify?


	12.
	Try compiling the program. What were the results? (Supply the specific error messages that the compiler reported.)


	13.
	Fix the syntax errors. What program did you compile successfully?


	14.
	The program has two logic errors. Fix them and supply the corrected program.


Big Java / Java Concepts Lab 2

Objects, Classes and Methods


The String class provides methods that you can apply to String objects. One of them is the length method. The length method counts the number of characters in a string. For example, the sequence of statements 


String river = "Mississippi";

	String bigRiver = river.toUpperCase(); 

sets bigRiver to the String object "MISSISSIPPI". Similarly, the toLowerCase method to a String object creates another String object that contains the characters of the original string, with uppercase letters converted to lowercase.

Write a program that constructs a String object with the value "This is a Test" and then creates a new String with the same message as the original string, but with every character converted to lowercase. Then, print the new string.
	


	2.
	Now, add the following two lines to the program you created on the previous exercise, right after the System.out.println statement:

String bigTestString =
smallTestString.toUpperCase(); 
// replace "smallTestString" with the 
// name you used for your lowercase
// string System.out.println(bigTestString); 
Notice that your program now applies the toLowerCase method to the original string, and then applies the toUpperCase method to that string. Paste the modified program below.

After applying the toUpperCase method, do you obtain the original string back? What will the System.out.println(bigTestString) statement print?


Method Parameters and Return Values

	3.
	The API (Application Programming Interface) documentation lists the classes and methods of the Java library. 

Go to http://java.sun.com/j2se/1.5/docs/api/index.html and find out what the method concat of the class String does. Describe in your own words.


	4.
	Complete the following program so that it computes a string with the contents "the quick brown fox jumps over the lazy dog", and then prints that string and its length.

public class ConcatTester 
{ 
    public static void main(String[] args) 
    { 
       String animal1 = "quick brown fox"; 
       String animal2 = "lazy dog"; 
       String article = "the"; 
       String action = "jumps over"; 

       /* Your work goes here */ 

    
    } 
} 


Exploring a New Class 

	5.
	The API (Application Programming Interface) documentation lists the classes and methods of the Java library. 

Go to http://java.sun.com/j2se/1.5/docs/api/index.html and find out what the StringTokenizer class does. Summarize in your own words.


	6.
	In the following exercise we will be using two methods from the class StringTokenizer: countTokens and nextToken.

Go to http://java.sun.com/j2se/1.5/docs/api/index.html and find out what the methods countTokens and nextToken of the StringTokenizer class do. Summarize in your own words.


	7.
	Consider the following program: 

import java.util.StringTokenizer; 

public class StringTokenizerTester 
{ 
    public static void main(String[] args) 
    { 
       String sentence = "Mary had a little lamb."; 
       StringTokenizer mystery = new StringTokenizer(sentence); 
       System.out.println(mystery.countTokens()); 
       System.out.println(mystery.nextToken()); 
       System.out.println(mystery.nextToken());    
    } 
} 

What does it print?


Object References 

	8.
	The following program creates a new Rectangle and prints its info. 

import java.awt.Rectangle; 

public class RectangleTester 
{ 
    public static void main(String[] args) 
    { 
       Rectangle r1 = new Rectangle(0, 0, 100, 50); 
       /* Your code goes here */ 
       System.out.println(r1); 
       /* and here */ 
    } 
} 
Add code to the program above to create a second rectangle with the same values (x, y, width and height) as the first Rectangle. Then, apply the grow method to the second rectangle (grow(10, 20)) and print both rectangles. For more info on the grow method, look at the API documentation. 

You can use the following Rectangle constructor to create the second rectangle:

public Rectangle(Rectangle r)
Constructs a new Rectangle, initialized to match the values of the specified Rectangle.

What is your modified program?


	9.
	Compile and run your program. What is its output?


	10.
	Modify your program and change the line where you create the second rectangle to:

Rectangle r2 = r1;
Compile and run your program. What is the output? Why?


	11.
	Consider the following program:

public class NumberVariablesTester 
{
    public static void main(String[] args) 
    { 
       double n1 = 150; 
       double n2 = n1; 

       n2 = n2 * 20; // grow n2

       System.out.println(n1); 
       System.out.println(n2); 
    } 
} 

Notice that this program is very similar to the program you created for the previous excercise, but it uses number variables instead of object references.

Compile and run the program. What is the output? Why? (In your answer, contrast the output of this program to that of the program you used in the previous exercise).


Big Java / Java Concepts Lab 3

Designing the Public Interface of a Class

	1.
	In this lab, you will implement a vending machine. The vending machine holds cans of soda. To buy a can of soda, the customer needs to insert a token into the machine. When the token is inserted, a can drops from the can reservoir into the product delivery slot. The vending machine can be filled with more cans. The goal is to determine how many cans and tokens are in the machine at any given time. 

What methods would you supply for a VendingMachine class? Describe them informally.


	2.
	Now translate those informal descriptions into Java method signatures, such as

public void fillUp(int cans)
Give the names, parameters, and return types of the methods. Do not implement them yet.


	3.
	What instance variables would you supply? Hint: You need to track the number of cans and tokens.


Implementing Methods

	4.
	Consider what happens when a user inserts a token into the vending machine. The number of tokens is increased, and the number of cans is decreased. Implement a method: 

public void insertToken() 
{ 
   // instructions for updating the token and can counts 
} 

You need to use the instance fields that you defined in the previous problem.

Do not worry about the case where there are no more cans in the vending machine. You will learn how to program a decision "if can count is > 0" later in this course. For now, assume that the insertToken method will not be called if the vending machine is empty.

What is the code of your method?


	5.
	Now supply a method fillUp(int cans) to add more cans to the machine. Simply add the number of new cans to the can count.

What is the code of your method? 


	6.
	Next, supply two methods getCanCount and getTokenCount that return the current values of the can and token counts. (You may want to look at the getBalance method of the BankAccount class for guidance.)

What is the code of your methods? 


Putting It All Together

	7.
	You have implemented all methods of the VendingMachine class. 

Put them together into a class, like this:


class VendingMachine 
{ 
    public your first method 
    public your second method 
    . . . 
    private your first instance field 
    private your second instance field 
}

What is the code for your complete class?


Testing a Class

	8.
	Now test your class with the following test program. 

public class VendingMachineTester 
{ 
    public static void main(String[] args) 
    { 
       VendingMachine machine = new VendingMachine(); 
       machine.fillUp(10); // fill up with ten cans 
       machine.insertToken(); 
       machine.insertToken(); 
       System.out.print("Token count = "); 
       System.out.println(machine.getTokenCount()); 
       System.out.print("Can count = "); 
       System.out.println(machine.getCanCount()); 
    } 
} 

What is the output of the test program?


Implementing Constructors

	9.
	The VendingMachine class in the preceding example does not have any constructors. Instances of a class with no constructor are always constructed with all instance variables set to zero (or null if they are object references). It is always a good idea to provide an explicit constructor. 

In this lab, you should provide two constructors for the VendingMachine class:

· a default constructor that initializes the vending machine with 10 soda cans 

· a constructor VendingMachine(int cans)that initializes the vending machine with the given number of cans 

Both constructors should initialize the token count to 0.

What is the code for your constructors?


Discovering Classes

	10.
	Consider the following task: You are on vacation and want to send postcards to your friends. A typical postcard might look like this: 

Dear Sue: I am having a great time on
the island of Java. The weather
is great. Wish you were here!
Love,
Janice 
You decide to write a computer program that sends postcards to various friends, each of them with the same message, except that the first name is substituted to match each recipient.

Concepts are discovered through the process of abstraction, taking away inessential features, until only the essence of the concept remains.

Using the abstraction process described in the book, what black box (class that will used to build objects of its type) can you identify?


	11.
	We want to be able to write a program that will use our Postcard class to send postcards with the same message to different recipients.

The following class implements a Postcard. 


public class Postcard 
{ 
    public Postcard(String aSender, String aMessage) 
    { 
       message = aMessage; 
       sender = aSender; 
       recipient = ""; 
    } 

    private String message; 
    private String sender; 
    private String recipient; 
}

Notice that we do not set the recipient in the constructor because we want to be able to change the recipient, and keep the same message and sender. What method would you add to support this functionality? Implement the method.


	12.
	Add a print() method to the Postcard class, that displays the contents of the postcard on the screen.

What is the code of your method? 


	13.
	Try out your class with the following test code:


public class PostcardTester 
{ 
    public static void main(String[] args) 
    { 
       String text = "I am having a great time on\nthe island of  Java. Weather\nis great. Wish you were here!"; 

       Postcard postcard = new Postcard("Janice", text); 
       postcard.setRecipient("Sue"); 
       postcard.print(); 
       postcard.setRecipient("Tim"); 
       postcard.print(); 
    } 
} 

What is the output of your program? 


Big Java / Java Concepts Lab 4

Using Numbers


Suppose you have 5 1/2 gallons of milk and want to store them in milk jars that can hold up to 0.75 gallons each. You want to know ahead of time, how many completely filled jars you will have. The following program has been written for that purpose. What is wrong with it? Why? How can you fix it? 

public class MilkJarCalculator 

{ 

    public static void main(String args[]) 

    { 

       double milk = 5.5; // gallons 

       double jarCapacity = 0.75; // gallons 


       System.out.println(completelyFilledJars); 

   } 

	} 
	


Constants 

	2.
	You want to know how many feet is 3.5 yards, and how many inches is 3.5 yards. You write the following program for that purpose: 

public class DistanceConverter 
{ 
    public static void main(String args[]) 
    { 
       double yards = 3.5; 
       double feet = yards * 3; 
       double inches = feet * 12; 

       System.out.println(yards + "yards are" + feet + "feet");
       System.out.println(yards + "yards are" + inches + "inches");
    }
} 

The problem with the program above, is that using "magic numbers" make it hard to maintain and debug. Modify the program so that it uses constants to improve legibility and make it easier to maintain.


	3.
	Run the program. What is the output? What change(s) would you make to the program to make the output more readable?


Arithmetic Operations and Mathematical Functions

	4.
	An annuity (sometimes called a reverse mortgage) is an account that yields a fixed payment every year until it is depleted. The present value of the annuity is the amount that you would need to invest at a given interest rate so that the payments can be made. 

The present value of an annuity (PVann) at the time of the first deposit can be calculated using the following formula:

PVann = PMT · ({[(1 + i)n - 1 - 1] / i } / (1 + i)n - 1 + 1) 

where:

PMT: periodic payment

i: periodic interest or compound rate

n: number of payments

What is the present value of an annuity with that pays out $10,000 of retirement income in each of the next 20 years if the interest rate is 8%?

Write a program to calculate the present value of an annuity, for the values given in the problem. Remember that you can use Math.pow(x, y) to calculate xy.

What is your program?


	5.
	What is the output of the following program? Why?


public class ArithmeticTester 
{ 
    public static void main(String args[]) 
    { 
       int age1 = 18; 
       int age2 = 35; 
       int age3 = 50; 
       int age4 = 44; 

       double averageAge = (age1 + age2 + age3 + age4) / 4; 
       System.out.println(averageAge); 
    } 
} 


	6.
	Fix the program in the previous problem so that it yields the correct result.


	7.
	What is the output of the following program? Why?


public class DoubleTester 
{ 
    public static void main(String args[]) 
    { 
       double probability = 8.70; 
       int percentage = (int) (100 * probability); 
       System.out.println(percentage); 
    } 
} 


	8.
	Fix the program from the previous problem so that it displays the correct result. Remember you can use Math.round to convert a floating-point value to its closest integer.


String Programming

	9.
	Using substring and concatenation, give a program containing a sequence of commands that will extract characters from inputString = "The quick brown fox jumps over the lazy dog" to make outputString = "Tempus fugit". Then print outputString. 


Reading Input

	10.
	The Scanner class lets you read keyboard input in a convenient manner. To construct a Scanner object, simply pass the System.in object to the Scanner constructor: 

Scanner in = new Scanner(System.in);
Once you have a scanner, you use the nextInt or nextDouble methods to read the next integer or floating-point number. For example:


System.out.print("Enter quantity: "); 
int quantity = in.nextInt(); 
System.out.print("Enter price: "); 
double price = in.nextDouble();
 
Modify the program you created in problem 4 (the one that calculates the present value of an annuity) so that the user can provide the values for pmt, i, and n through the console. 


Big Java / Java Concepts Lab 5

Frame Windows


Complete the missing lines in the following code: 

import javax.swing.____; 

public class TestFrameViewer 

{ 

    public static void main(String[] args) 

    { 

       ____ frame = new ____(); 

       final int FRAME_WIDTH = 250; 

       final int FRAME_HEIGHT = 250; 

       frame.____(FRAME_WIDTH, FRAME_HEIGHT); 

       frame.setTitle("A Test Frame"); 

       frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

       frame.____(true); 

    } 

	} 
	


Lines

	2.
	Create a component (class TriangleComponent extends JComponent) that uses three Line2D.Double objects to draw a triangle that looks like this: 

[image: image1.png]



What is the code for your TriangleComponent class?


	3.
	To show the component that draws a triangle you need a viewer class. Write a viewer class that shows the component that you created in the previous problem.


Rectangles and Lines

	4.
	Write a class HouseComponent class whose paintComponent method uses Rectangle and Line2D.Double objects to draw a house like this one: 

[image: image2.png]



What is the code for your HouseComponent class?


Colors

	5.
	Generate five circles with the following diameteres, 40, 80, 120, 160, and 200, all tangent at a common point. 

[image: image3.png]



Draw each circle in a different color. 

What is the code for your CirclesComponent class?


Getting Input from an Option Pane 

	6.
	Write a program NameViewer that prompts for the user's name and draws the name inside a rectangle. The drawing will occur inside a BoxedStringComponent class.  


	7.
	Now implement the BoxedStringComponent class. 


Comparing Visual and Numerical Information

	8.
	Write a program that draws three lines, as in the following figure. 

[image: image4.png]1000

(100.0,133.33333333333334)





When the program starts, it should ask the user for a value v, then it draws the line joining the origin (0,0) with the point (v, 200).

Line2D.Double line1 = new Line2D.Double(0, 0, v, 200); 
Note that the equation of this line is

v · y = 200 x

The second (horizontal) line has the equation

x = 100

You can generate it by using the following:

Line2D.Double line2 = new Line2D.Double(100, 0, 100, getWidth());
The third (vertical) line has the equation

y = 100

Mark the intersection points with small circles and print their coordinate values. To compute the intersection points, you need to solve two sets of equations. This set gives you the first intersection point:

v · y = 200 x

x = 100

This set gives you the second intersection point:

v · y = 200 x

y = 100

Tip: Start with the IntersectionComponent.java program from the textbook. The code for drawing and labeling the intersection points is helpful. You will need to change the equations. 

What is the code of your modified IntersectionComponent class?


	9.
	Run the program with a value of v = 160. What intersection points does your program produce?


	10.
	Verify the computation by calculating the values. Show your work here.


Drawing Complex Shapes

	11.
	Suppose you need to write a graphic application that will draw several cars and a couple of houses. Which classes would you define in order to solve this problem in an efficient and object-oriented manner? 


	12.
	The book already provides a Car class. Write a House class that draws a house in a particular position. The top left corner of the bounding rectangle of the house should be given to the constructor. You can build up from the code you developed in problem 4.


	13.
	Write a component class that draws two cars and two houses, using the classes Car and House. 
What is the code for your component class?


Big Java / Java Concepts Lab 6

The if Statement


if (n > 10) System.out.print("*****"); 

if (n > 7) System.out.print("****"); 

if (n > 4) System.out.print("***"); 

if (n > 1) System.out.print("**"); 

	System.out.println("*"); 

How many * will be printed when the code is executed

1) with n = 6 ?

2) with n = 20 ?

3) with n = 2 ? 

4) with n = -1 ?
	


Relations and Relational Operators

	2.
	The relational operators in Java are ==, !=, <, >, <=, and >=. 

Using relational operators, formulate the following conditions in Java:

1) x is positive

2) x is zero or negative

3) x is at least 10

4) x is less than 10

5) x and y are both zero

6) x is even


	3.
	Formulate the following conditions for the Rectangle object r:

1) The width of r is at most 10

2) The area of r is 100


Input Validation

	4.
	Build and run the following program. What happens when the two points have the same x coordinate? 

import java.awt.geom.Point2D; 
import java.util.Scanner; 

public class Slope 
{ 
    public static void main(String[] args) 
    { 
        Scanner in = new Scanner(System.in); 

        System.out.print("Input x coordinate of the first point: "); 
        double xcoord = in.nextDouble(); 

        System.out.print("Input y coordinate of the first point: "); 
        double ycoord = in.nextDouble(); 

        Point2D.Double p1 = new Point2D.Double(xcoord, ycoord); 

        System.out.print("Input x coordinate of the second point: "); 
        xcoord = in.nextDouble(); 

        System.out.print("Input y coordinate of the second point: ); 
        ycoord = in.nextDouble(); 

        Point2D.Double p2 = new Point2D.Double(xcoord, ycoord); 

        double slope = (p2.getY() - p1.getY()) / (p2.getX() - p1.getX()); 

        System.out.println("The slope of the line is " + slope); 
    } 
} 


	5.
	Correct and rebuild the program to disallow a vertical line (denominator = 0). What change did you make to the program?


	6.
	What are the results when point1 = (4,2) and point2 = (4,2)?


	7.
	What are the results when point1 = (4,2.5) and point2 = (3,1.5)?


The if/else Statement

	8.
	In the previous example, your program probably responded to user input by ignoring cases that would result in a division by zero. You can use the if/else format to explicitly specify the action to be taken, rather than designing the program to ignore certain input. 
if (test_expression) 
/* do something . . . */ 
else
/* do something different . . . */

A wholesaler advertises a volume discount on widgets of 10 cents off the price per widget for every thousand widgets purchased over 10,000. The price before the discount is $950.00 per thousand, or 95 cents per widget. 

First write a class Order with methods void addWidgets(int quantity) and double getPrice(). 

What is the code for the Order class?


	9.
	Write a program that receives the number of widgets in an order and calculates and displays the total cost.


	10.
	According to your program, how much will it cost to buy:

1) 2,000 widgets?

2) 15,000 widgets?

3) 18,000 widgets?




Multiple Alternatives

	11.
	The if/else decision in the preceding example can be extended to select from more than two possible outcomes. The if . . . else . . . else syntax is used to select only one of several possible actions. 
if (test expression 1) 
/* do something . . . */ 
else if (test expression 2) 
/* do something different . . . */ 
else 
/* do something generic . . . */ 

Reimplement the Order class. This time there will be no discount on the first 10,000 widgets, 5 cents off per widget for the second 10,000 widgets, 10 cents off per widget for an order over 20,000 widgets, and 20 cents off per widget on any order over 50,000 widgets.

What is the code for the modified Order class?


Nested Branches

	12.
	If multiple conditions exist, a conditionally executed block may contain further decisions. Here is an example. 

Extend the following code to test whether two circles, each having a fixed center point and a user-defined radius, are disjoint, overlapping, or concentric.

[image: image5.png]OO0 W ©

Disiint Overtapring Mutually cortainedt





public class CircleOverlap 
{ 
    public static void main(String[] args) 
    { 
       Scanner in = new Scanner(System.in); 

       System.out.print("Input the radius of the first circle: "); 
       double radius1 = in.nextDouble(); 
       double xcenter1 = 0; 
       double ycenter1 = 0; 
       System.out.print("Input the radius of the first circle: "); 
       double radius2 = in.nextDouble(); 
       double xcenter2 = 40; 
       double ycenter2 = 0; 

       /* 
          Your work goes here 
       */ 
       } 
} 


Logical Operations

	13.
	Java has three logical operations, &&, ||, and !. Using these operations, express the following: 

1) x and y are both positive or neither of them is positive.

Formulate the following conditions on the date given by the variables day and month.

2) The date is in the second quarter of the year.

3) The date is the last day of the month. (Assume February always has 28 days.)

4) The date is before April 15.


	14.
	The following class determines if a particular package is eligible for Unidentified Delivery Service's special Northwest Urban Rate Discount. Simplify the nested branches by using the logical operations &&, ||, and !
wherever possible. 

public class Shipment
{
    public boolean isDiscount()
    {
       boolean first;
       boolean second;

       if (fromState.equals("OR"))
       {
          if (fromAddress.substring(0,11).equals("Rural Route")
             first = false;
          else
             first = true;
       }
       else if(fromState.equals("WA"))
       {
          if (fromAddress.substring(0,11).equals("Rural Route"))
             first = false;
          else
             first = true;
       }
       else if (fromState.equals("BC"))
       {
          if (fromAddress.substring(0,11).equals("Rural Route"))
             first = false;
          else
             first = true;
       }
       else
          first = false;

       if (toState.equals("OR"))
       {
          if (toAddress.substring(0,11).equals("Rural Route"))
             second = false;
          else
             second = true;
        }
       else if (toState.equals("WA"))
       {
          if (toAddress.substring(0,11).equals("Rural Route"))
             second = false;
           else
               second = true;
       }
       else if (toState.equals("BC"))
       {
           if (toAddress.substring(0,11).equals("Rural Route"))
              second = false;
          else
             second = true;
       }
       else
          second = false;

       if (first && second)
          return true;
        else
           return false;
    }
    . . .
    private String fromAddress;
    private String fromCity;
    private String fromState;
    private String toAddress;
    private String toCity;
    private String toState;
}


if (first && second)
          return true;
        else
           return false;
    }
    . . .
    private String fromAddress;
    private String fromCity;
    private String fromState;
    private String toAddress;
    private String toCity;
    private String toState;
}
Using Boolean Variables

	15.
	According to the following program, what color results when using the following inputs? 

1) Y N Y
2) Y Y N
3) N N N

public class ColorMixer 
{ 
   public static void main(String[] args) 
   { 
       String mixture = ""; 
       boolean red = false; 
       boolean green = false; 
       boolean blue = false; 

       Scanner in = new Scanner(System.in); 
       System.out.print("Include red in mixture? (Y/N) "); 
       String input = in.next(); 
       if (input.toUpperCase().equals("Y")) 
          red = true; 

       System.out.print("Include green in mixture? (Y/N) "); 
       input = in.next(); 
       if (input.toUpperCase().equals("Y")) 
          green = true; 

       System.out.print("Include blue in mixture? (Y/N) "); 
       input = in.next(); 
       if (input.toUpperCase().equals("Y")) 
          blue = true; 

       if (!red && !blue && !green) 
          mixture = "BLACK"; 
       else if (!red && !blue) 
          mixture = "GREEN"; 
       else if (red) 
       { 
          if (green || blue) 
          { 
             if (green && blue) 
                mixture = "WHITE"; 
             else if (green) 
                 mixture = "YELLOW"; 
              else 
                 mixture = "PURPLE"; 
           } 
           else 
              mixture = "RED"; 
       } 
       else 
       { 
          if (!green) 
             mixture = "BLUE"; 
          else 
             mixture = "CYAN"; 
       } 

       System.out.println("Your mixture is " + mixture); 
    } 
} 


} 
           else 
              mixture = "RED"; 
       } 
       else 
       { 
          if (!green) 
             mixture = "BLUE"; 
          else 
             mixture = "CYAN"; 
       } 

       System.out.println("Your mixture is " + mixture); 
    } 
}
Big Java / Java Concepts Lab 7

Simple Loops


It is often necessary to repeat a portion of code several times in a program. A simple loop can automate the repetition. Here is a program that computes the number of digits needed to represent a number in base 10. 


/** 


Count number of digits needed to express an integer in base 10 


*/ 


public static void main(String[] args) 


{ 


Scanner in = new Scanner(System.in); 

   System.out.print("Input an integer between 1 and 9999: "); 

   int n = in.nextInt(); 


   if (n < 1 || n > 9999) return; 


   int temp = n; 


 int d = 1; 


if (temp > 9) 


{ 


temp = temp / 10; 


d++; 


} 


if (temp > 9) 


{ 


temp = temp / 10;   


d++; 


} 


if (temp > 9) 


{ 


temp = temp / 10; 


d++; 


} 


if (temp > 9) 


{ 


temp = temp / 10; 


d++; 

   } 

   System.out.println(n + " can be expressed in " + d + " digits"); 

} 


Here is the same program, with a while loop:


/** 

   Count number of digits needed to express an integer in base 10 

   using while loop. 

*/ 

public static void main(String[] args) 

{ 

   Scanner in = new Scanner(System.in); 

   System.out.print("Input an integer: "); 

   int n = in.nextInt(); 

   int d = 1; 

   int temp = n; 

   while (temp > 9) 

   { 

      temp = temp / 10; 

      d++; 

   } 

   System.out.println(n + " can be expressed in " + d + " digits"); 

	} 

The fractions 1/2, 1/4, 1/8 get closer and closer to 0 as they are divided by two. Change the previous program to count the number of divisions by two needed to be within 0.0001 of zero.
	

	
	The fractions 1/2, 1/4, 1/8 get closer and closer to 0 as they are divided by two. Change the previous program to count the number of divisions by two needed to be within 0.0001 of zero.




Loop Termination 

	2.
	Which values of year cause the following loop to terminate? 

/** 
   Count the number of years from a user-input year until the year 3000. 
*/ 
public static void main(String[] args) 
{ 
   int millennium = 3000; 
   Scanner in = new Scanner(System.in); 
   System.out.print("Please enter the current year: "); 

   int year = in.nextInt(); 
   int nyear = year; 

   while (nyear != millennium) 
   { 
      nyear++; 
   } 

   System.out.println("Another " + (nyear - year) + " years to the millennium."); 
} 


	3.
	Re-write the preceding while loop so that it will terminate for any integer input.


for Loops 

	4.
	A variable that counts the iterations of a loop is called a loop index or loop control variable. In the preceding examples nyear serves as an index, counting the number of years to the next millennium. This type of loop is frequently written using a for loop. 
for (initialization; condition; update) 
    statement 

Write a program controlled by two (non-nested) for loops that produces the following listing of inclusive dates, from the fifth century B.C. through the fifth century A.D.


Century 5 BC 400-499 
Century 4 BC 300-399 
Century 3 BC 200-299 
Century 2 BC 100-199 
Century 1 BC 1-99 
Century 1 AD 1-99 
Century 2 AD 100-199 
Century 3 AD 200-299 
Century 4 AD 300-399 
Century 5 AD 400-499 


	5.
	Write the same program with a single loop for (i = -5 ; i <= 5 ; i++) and an if in the body of the loop.


Other Loops

	6.
	One loop type might be better suited than another to a particular purpose. The following usages are idiomatic. 

for
Known number of iterations

while
Unknown number of iterations

do/while
At least one iteration

Convert the following while loop to a do/while loop.


public static void main(String[] args) 
{ 
    Scanner in = new Scanner(System.in); 
    int sum = 0; 
    int n = 1; 

    while (n != 0) 
    { 
        System.out.print("Please enter a number, 0 to quit: "); 
        n = in.nextInt(); 
        if (n != 0) 
        { 
            sum = sum + n; 
            System.out.println("Sum = " + sum); 
        } 
    } 
} 


	7.
	Is this an improvement? Why or why not?


	8.
	Convert the while loop to a for loop.


/** 
    Program to compute the first integral power to which 2 can be 
    raised that is greater than that multiple of a given integer. 
*/ 
public static void main(String[] args) 
{ 
    Scanner in = new Scanner(System.in); 
    System.out.print("Please enter a number, 0 to quit: "); 
    int n = in.nextInt(); 

    int i = 1; 
    while (n * n > Math.pow(2,i)) 
    { 
        i++; 
    } 

    System.out.println("2 raised to " + i 
            + " is the first power of two greater than " + n + " squared"); 
    } 
} 


	9.
	Convert to a while loop:


public static void main(String[] args) 
{ 
    for (int i = 1; i <= 10; i++) 
    { 
        System.out.println(i + " squared equals " + i * i); 
    } 
}


Tracing Loops

	10.
	What is the output of the following loop? 

for (int i = 0; i < 5; i++) 
{ 
    System.out.print(i + " "); 
}


	11.
	Leave the loop as it is and change only the expression inside System.out.print so that the program will display "1 2 3 4 5 ".

What change do you make to the argument of System.out.print?


	12.
	What is the output of the following loop?


int decimals = 1; 
while (decimals < 100000) 
{ 
    System.out.print(decimals + " "); 
    decimals = decimals * 10;
} 


	13.
	Leave the loop as it is and change only the expression inside System.out.print so that the program will display "1 2 3 4 5 ".

What change do you make to the argument of System.out.print?


	14.
	What is the output of the following loop?

int i = 5; 
do 
{ 
    System.out.print(i + " "); 
    i--; 
} 
while( i > 0 ); 


Nested Loops

	15.
	Write a program to draw a top view of 24 soda cans, that is 24 circles, arranged in a 4 x 6 grid like this: 

[image: image6.png]



What is the code for the SodaCanComponent class? 


Random Numbers

	16.
	To generate random numbers, you construct an object of the Random class, and then apply one of the following methods: 

nextInt(n): A random integer between the integers 0 (inclusive) and n (exclusive)

nextDouble(): A random floating-point number between 0 (inclusive) and 1 (exclusive)

Write a program that simulates the drawing of one playing card (for example, Ace of Spades).


Big Java / Java Concepts Lab 8

Using Arrays

	1.
	In the text, we have frequently used the Random.nextInt method to generate random integers. For example, 1 + Random.nextInt(6) generates random numbers between 1 and 6, simulating the throw of a die. In this lab assignment, use an array to test whether the random generator is fair, that is, whether each possible value is generated approximately the same number of times. 

Your program should ask the user:

· How many random numbers should be generated? 

· What is the number of values for each random draw? (e.g., 6) 

Make an array with one element for each possible outcome. Set each element to 0. Then keep calling the random number generator. If it returns a value v, then increment the counter belonging to v.

After all numbers have been generated, print the counters. Here is a typical program run:

How many numbers do you want to generate? 1000 
What is the number of values? 10 
0 78 
1 101 
2 118 
3 97 
4 103 
5 102 
6 112 
7 91 
8 94 
9 104 

What is the code for your program?


Simple Array Algorithms

	2.
	<>In the following problem you will write a method for the class ScoreSet
that finds an average score from a sequence of scores where the lowest two scores are discarded. Part of the class has been provided for you: 

public class ScoreSet 
{ 
   public ScoreSet() 
   { 
      scores = new ArrayList<Integer>();   
   } 

    public void add(int score) 
    {
       Integer wrapper = new Integer(score);
       scores.add(wrapper); 
   }
   public double averageWithoutLowest2() { . . . } 
   private ArrayList<Integer> scores;
} 

Change the add method so that it uses auto-boxing instead of explicitly creating a wrapper. 


	3.
	Provide an implementation for the method averageWithoutLowest2 that finds an average score from a sequence of scores where the lowest two scores are discarded.


	4.
	How does your class process duplicate scores? For example, how does it process 95, 90, 90, 68, 78, 68, 68, 80? What do you think it should do?


The Enhanced for Loop

	5.
	Write a toString method to the class ScoreSet that creates a string representation of the array list, using an enhanced for loop (a for each loop). 

For example, a ScoreSet with the values of the previous question should yield the string "[95 90 90 68 78 68 68 80]"


Avoiding Parallel Arrays

	6.
	Write a program that reads in the names and scores of students and then computes and displays the names of the students with the highest and lowest scores. 

A simple method of carrying out this task would be to have two parallel arrays.


String[] names; 
int[] scores; 

However, you should avoid parallel arrays in your solution.

First, write a class Student to solve the parallel array problem. Leave the StudentScores class and tester class for the following exercises. A Student simply holds a student name and a score.

What is your Student class? 


	7.
	Next is a bad implementation of the StudentScores class that uses two parallel arrays. Modify it to eliminate the use of parallel arrays. Use an array list of students in your solution.


public class BadStudentScores 
{ 
    public BadStudentScores() 
    { 
        scores = new int[MAX_STUDENTS]; 
        names = new String[MAX_STUDENTS]; 
        numStudents = 0; 
    } 

    public void add(String name, int score) 
    { 
       if (numStudents >= MAX_STUDENTS) 
       return; // not enough space to add new student score 

       names[numStudents] = name; 
       scores[numStudents] = score; 
       numStudents++; 
    } 

    public String getHighest() 
    { 
       if (numStudents == 0) 
          return null; 

      int highest = 0; 

      for (int i = 1; i < numStudents; i++) 
         if (scores[i] > scores[highest]) 
      highest = i; 

      return names[highest]; 
    } 

    public String getLowest() 
    { 
      if (numStudents == 0) 
         return null; 

      int lowest = 0; 

      for (int i = 1; i < numStudents; i++) 
      if (scores[i] < scores[lowest]) 
         lowest = i; 

      return names[lowest]; 
    } 

    private final int MAX_STUDENTS = 100; 

    private String[] names; 
    private int[] scores; 
    private int numStudents; 
} 

Supply the code for the StudentScores class. Use the Student class that you created.


	8.
	Write a program that reads in the names and scores of students and then computes and displays the names of the students with the highest and lowest scores.

Part of the class code has been provided for you:


public class StudentScoresTester 
{ 
    public static void main(String[] args) 
    { 
       StudentScores studSc = new StudentScores(); 
       Scanner in = new Scanner(System.in); 
       boolean done = false; 

       // Read the students names and scores, and add them to studSc

       do 
       { 
          System.out.println("Enter a student name or -1 to end: "); 
          String name = in.nextLine(); 

          if (name.equals("-1")) 
             done = true; 
          else 
          { 
              System.out.println("Enter the student's score: "); 
              int score = in.nextInt(); 
              in.nextLine(); // skip the end-of-line character 

              /** Your code goes here */ 
          } 
       } 
       while (!done); 

       // Find the students with highest and lowest scores and print 
       // their names and scores 
       /** And here */ 
    } 
} 

Complete the tester class, using the StudentScores class that you created in the previous exercise. What is the complete code for your class?


Using Array Lists to Collect Objects

	9.
	Array Lists can hold collections of objects that may be quite large. In the following lab program, generate random circle objects and store them in an ArrayList. If a circle does not intersect any of the previously stored circles, add it to the array. Finally, display all circles that you collected in the array. The result should look something like the image below. (Note that none of the circles intersect.) 

[image: image7.png]iy 0o o o
o omv q omwOmmewOoo
o Oog Q b o
[ @ @ﬁ@)@ oO) OOD O \)





[image: image8]
  


If you don't know how to draw the circles, then you will need to print them out, which is less fun.

Use the code of the circleIntersect method that is given below to test whether two circles intersect. To randomly generate a circle, simply pick random x- and y- positions between 0 and 300 for the center and a random radius between 1 and 30. Compare each newly generated circle with all other circles before you add it. If the new circle passes the test, add it to the end of the array. Note that the array will have fewer elements than the number of generated circles since you are rejecting some of the circles.

Part of the code for the component class has been provided for you. Look for comments enclosed in "/** . . . */" which give you suggestions of how to complete the class.

public class CirclesComponent extends JComponent 
{ 
   public CirclesComponent() 
   { 
      circles = new ArrayList<Ellipse2D.Double>(); 

      // fill circles array list with circles 

      for (int i = 1; i <= NCIRCLES; i++) 
      { 

         // Set the values of x, y and r to three randomly generated values. 
         // Then, create a new Circle (Ellipse2D.Double) using these values 

      

         // Check that the new circle does not intersect a previous one. 
         // You will need to iterate through the array list and verify 
         // that the current circle does not intersect with a circle 
         /// in the array list. 

         // Add the circle to the array list if it does not intersect 
         // with another one.
      } 
   } 

   /** 
      Test if two circles intersect. 
      (distance between centers is less than sum of radii) 
      @param c1 the first circle 
      @param c2 the second circle 
      @return true if c1 and c2 intersect
   */ 
   public boolean circlesIntersect(Ellipse2D.Double c1, 
      Ellipse2D.Double c2) 
   { 
      double radius1 = c1.getWidth() / 2; 
      double radius2 = c2.getWidth() / 2; 

      double dx = c1.getX() + radius1 - c2.getX() - radius2; 
      double dy = c1.getY() + radius1 - c2.getY() - radius2; 

      double distance = Math.sqrt(dx * dx + dy * dy); 
      return distance < radius1 + radius2; 
   } 
 
   public void paintComponent(Graphics g) 
   { 
      Graphics2D g2 = (Graphics2D) g; 

      for (. . .) // iterate through every circle in the list
         g2.draw(. . .); // draw the circle
   } 
     
   private ArrayList<Ellipse2D.Double> circles; 
}

Complete this class.

	10.
	Using the debugger or a print statement, find out what percentage of circles was rejected. (NCIRCLES - circles.size())

Run your program five times. What rejection percentages do you get?


Two-Dimensional Arrays


In this problem, you will modify the TicTacToe class from the textbook. Add a method flipVertical that flips the board position along the vertical axis. For example, the position


x x o

  o

    x


is flipped to


o x x

  o

x   


This is not useful for playing the game, but it can be useful for recognizing a winning strategy in a database of strategies.

Also supply a flipHorizontal method that would flip the original position to 


    x

  o

x x o


(Hint: If you are clever and understand how two-dimensional arrays are implemented as "arrays of arrays", this method can be much simpler than the vertical flip.)

What is your implementation of the flipVertical and flipHorizontal methods?

	
	


	12.
	Supply a program that tests your method.


Big Java / Java Concepts Lab 9

Choosing Classes

	1.
	Consider the following problem:

A company allows its employees to check out certain items, such as handheld computers and music players to gain personal experience with them. Popular items can be reserved on a first come/first served basis. A reservation list is kept for each item. There is a fine for overdue items.

Your development team's task is to write a software program that allows the stockroom clerk to check out items and check them back in, to reserve items, to notify employees when a reserved item has been returned, to produce reports of overdue items, and to track payment of fines.

What classes would you choose to implement this program?


Cohesion and Coupling

	2.
	Consider the java.awt.Toolkit class in the standard Java library. Is its public interface cohesive? Explain why or why not.


	3.
	Which of the following classes depend on each other?

String 
StringTokenizer 
PrintStream 
Random 

Hint: Look at the API documentation.


Accessor and Mutator Methods 

	4.
	Look up the methods of the StringTokenizer class in the API documentation. Indicate which methods are accessors, and which are mutators.

Hint: Remember that accessor methods do not change the state of the object. Therefore, if you call an accessor method multiple times in a row with the same parameters, you always get the same answer.


	5.
	A class is immutable if it has no mutator methods.

List four immutable classes.


Side Effects

	6.
	The following class has a method with a side effect:


/** 
   A purse computes the total value of a collection of coins. 
*/ 
public class Purse 
{ 
    /** 
       Constructs an empty purse. 
    */ 

    public Purse() 
    { 
       total = 0; 
    } 

    /** 
       Add a coin to the purse. 
       @param aCoin the coin to add 
    */ 
    public void add(Coin aCoin) 
    { 
       total = total + aCoin.getValue(); 
       System.out.println("The total is now " + total); 
    } 
    /** 
       Get the total value of the coins in the purse. 
       @return the sum of all coin values 
    */ 

    public double getTotal() 
    { 
       return total; 
    } 

    private double total; 
} 
Describe the side effect, and explain why it is not desirable.


	7.
	How would you eliminate the side effect?


Preconditions and Postconditions

	8.
	What are the preconditions of the nextLine method of the Scanner class?


	9.
	What happens if you violate one of those preconditions?


	10.
	Coins should not have a negative value or a value of zero. Document an appropriate precondition of the Coin constructor to ensure these requirements.


	11.
	Suppose a CashRegister class has the following methods:

recordPurchase 
enterPayment 
giveChange 
getPurchaseAmount
Provide an appropriate postcondition for the recordPurchase of the CashRegister class, which is defined as follows:

/** 
   Records the purchase price of an item. 
   @param amount the price of the purchased item
   Precondition: amount >= 0 
*/ 
public void recordPurchase(double amount) 
{ 
   purchase = purchase + amount; 
} 


Static Methods

	12.
	A static method has no implicit parameters. Sometimes, we use static methods because all the method parameters are numbers. Numbers are not objects, so they cannot be implicit parameters of a method. 

Write two static methods that compute the circumference of a circle with a given radius r the area of a circle with a given radius r
Place the two static methods into a class Geometry


	13.
	An overuse of static methods is often a sign of poor object-oriented design. Explain how you can compute the circumference and area of circles in a more object-oriented fashion. Provide the more object-oriented solution.


Static Fields

	14.
	Consider the Needle class from Chapter 7 of the textbook.

Each needle object has its own random number generator object, which is wasteful. A single random number generator can be shared among all needle objects.

Reimplement the Needle class so that all objects share a static generator.


Scope

	15.
	Suppose you add the following method
/** 
    Compares the radius of another circle with the radius of this circle. 
    @param radius the radius of the other circle 
    @return A value less than zero if the radius of this circle is smaller than 
    the radius of the other circle, 0 if they are equal, and a value 
    greater than zero if the radius of this circle is greater than the 
    radius of this circle 
*/ 
public int compareRadius(double radius) 
{ 
   final double EPSILON = 1E-12;
   double diff = radius - radius;
   if (Math.abs(diff) < EPSILON) return 0;
   if (diff < 0) return -1;
   if (diff > 0) return 1; 
} 
to the Circle class you created in this lab. Note that the return statement has an error, because it is trying to use the radius of this circle and the radius of the other circle, but both have the same name (overlapping scope). How can we access the shadowed field name?


Packages

	16.
	Place the Bank and BankAccount programs of Chapter 8 into a package named com.horstmann.java. 

Into which directory should you place the code files?


	17.
	What modifications do you need to make to the files BankAccount.java and Bank.java?


	18.
	What modifications do you need to make to the file BankTester.java?


Big Java / Java Concepts Lab 10

Unit Tests


You will write two test stubs for the following class. The first test stub takes test values from prompted user input. The second test stub generates test cases randomly.


public class Finder 

{ 

    /** 

        Constructs a finder that finds substrings in a given string. 

        @param aString the string to analyze 

    */ 

    public Finder(String aString) 

    { 

        s = aString; 

    } 

    /** 

        Search for a substring. 

        @param sub the string to look for 

        @return if found, the integer position of sub in the string 

        else, -1 

    */ 

    public int findFirst(String sub) 

    { 


        while (sub.length() + i <= s.length()) 

        { 

            if(s.substring(i, i + sub.length()).equals(sub)) 

                return i; 

            else 

                i++; 

        } 

        return -1; 


    private String s; 

	} 
First, provide a test harness that prompts the user for test cases.
	


	2.
	It is tedious to type in lots of test data every time you find a bug in your code. How can you reduce your workload?


	3.
	Provide a test harness for randomly generated test cases.

When generating test cases randomly, be sure to include positive and negative tests.

Hint: We have no function to generate a completely random string, but you can write one. Make a string of the 26 lowercase letters, then extract single-character length substrings from it at positions generated by generator.nextInt(26) and concatenate them.


	4.
	Did you think of boundary cases? What are the boundary cases in this example?


Finding a Bug

	5.
	Now run the following method through two test procedures (manual and automatic test case generation).


public class Finder 
{ 
    . . . 
    /** 
        Searches for last occurrence of a string. 
        @param sub the string to look for 
        @return if found, the integer position of sub in s else, -1 
    */ 
    public int findLast(String sub) 
    { 
        String sCopy = s; 
        while (sub.length() <= sCopy.length()) 
        { 
            if(sCopy.substring(sCopy.length() - sub.length(),                 sCopy.length()).equals(sub)) 
                return sCopy.length() - sub.length(); 
            else 
                sCopy = sCopy.substring(0, sCopy.length() - 2); 
        } 
        return -1; 
    } 
    . . . 
} 

What is the error?


	6.
	Did one of your test cases catch it? If yes, which one?


Selecting Test Cases

	7.
	Test cases should provide complete coverage of each instruction branch in your function. Every branch, for example both statement blocks in an if - else pairing, should succeed and fail at least once. 

/** 
    Simplified calculator to perform two variable arithmetic. 
*/ 

public class Calculator 
{ 
    public Calculator() 
    { 
        result = 0; 
    } 

    /** 
        Gets the current result (the value that the calculator displays on its screen). 
    */ 
    public double getResult() 
    { 
        return result; 
    } 

    /** 
        Carries out a computation and sets the result to 
        the value that is obtained by combining the old 
        result with a value that the user supplied. 
        @param op the arithmetic key that the user typed 
        @param arg the number that the user typed 
     */ 
    public void compute(String op, double arg) 
    { 
        if (op.equals("+")) 
        { 
            result = result + arg; 
        } 
        else if (op.equals("-")) 
        { 
            result = result + arg; 
        } 
        else if (op.equals("*")) 
        { 
            double = result * arg; 
        } 
        else if (op.equals("/")) 
        { 
            if (arg != 0) 
            { 
                result = result / arg; 
            } 
        } 
    } 

    private double result; 
} 

Give a set of test cases for op, and arg that provides complete coverage of all branches.


{ 

                result = result / arg; 

            } 

        } 

    } 

    private double result; 

} 

Give a set of test cases for op, and arg that provides complete coverage of all branches.

	8.
	Compile and run the class. Either use BlueJ or supply a test harness. Then enter the test cases that you supplied. Does each branch work as expected?


Test Case Evaluation

	9.
	Having tested the input to a function, how can the output be validated? You can

· pick inputs that have known results 

· write a test harness that verifies that the output values fulfill certain properties 

· compare a result with an answer obtained another way (using an oracle) 

Test the following power method.

public class Numeric 
{ 
    /** 
        Compute an integral power of a number. 
        @param a the number to be raised to an integral power 
        @param n the power to which it is to be raised 
        @return a to the nth power 
    */ 
    public static double power(double a, int n) 
    { 
        double r = 1; 
        double b = a; 
        int i = n; 

        while (i > 0) 
        { 
            if(i % 2 == 0) /* even */ 
            { 
                b = b * b; 
                i = i / 2; 
            } 
            else /* odd */ 
            { 
                r = r * b; 
                i--; 
            } 
        } 

        return r; 
    } 

    /** 
        Tests whether two floating-point numbers are 
        equal, except for a roundoff error. 
        @param x a floating-point number 
        @param y a floating-point number 
        @return true if x and y are approximately equal 
    */ 
 


public static boolean approxEqual(double x, double y) 
    { 
        final double EPSILON = 1E-12; 
        return Math.abs(x - y) <= EPSILON; 
    } 
} 

Write a program that uses the reciprocal Math.sqrt to test whether Math.sqrt(Numeric.power(x,2)) should be equal to x.

	10.
	If the test succeeds, how much confidence do you have that power is correct?


	11.
	Use the fact that xy = ey log(x). Write a program that computes the power function in another way, and compares the two values.


	12.
	(Extra credit) Which way is actually faster, power(double a, int n) or exp(y * log(x))?


Program Traces

	13.
	A program trace is the result of print statements at known points in a program. It shows that the program has executed commands up to a certain point, and allows you to print the values of key variables at that point.

Add print statements to the preceding Numeric.power method to document all changes to variables r, b, and i.


	14.
	Show the resulting trace when power is called with a = 3 and n = 11.


	15.
	The disadvantage of print statements is that you need to remove them when your code is debugged. Therefore, it is better to use the logging facility. Replace the print statements with logging calls in the Numeric.power method.


	16.
	Run your modified method with a = 2 and n = 12. Exactly what logging output do you get?


	17.
	The following portion of the lab is designed to have you practice some of the basics of debugging. We will analyze a program that displays Pascal's triangle. This triangle is a sequence of integers that arises in numerous areas of math and computer science, especially combinatorics and probability. For example, the Pascal triangle of height 4 is:


1 
1 1 
1 2 1 
1 3 3 1 
1 4 6 4 1 
Entries in Pascal's triangle are indexed by integers. n is the number of the row and k is the position from the leftmost member of the row. The indexes in both directions start at zero (0), so in the last row listed above, C(4,0) = 1, C(4,1) = 4, C(4,2) = 6, and so on.

The values themselves are computed by the formula C(n, k) = n! / (k! * (n-k)!), which is called a combination. n! denotes a factorial, that is, the product n*(n-1)*(n-2)*...*2*1. The combinations can be interpreted as the number of ways to choose k elements from a collection containing n elements. When described, it is customary to say "n choose k", for instance '4 choose 2 is 6' ".

If four objects are numbered 1 through 4, how many ways can you select two of them? Show all the possible pairings here. Then compute C(4, 2) by using the formula. Does it match the number of selections?


	18.
	Here is a class that makes a Pascal triangle of a given height. We also provide a test harness.


public class PascalTriangle 
{ 
    /** 
        Constructs a triangle of a given height. 
        @param height the height (0-based) 
    */ 
    public PascalTriangle(int height) 
    { 
        triangleString = ""; 
        int spacesToSkip = 2 * height; // spaces to skip at the beginning of each row 
        // start a loop over the number of rows 

        for (int n = 0; n <= height; n++) 
        { 
            skip(spacesToSkip); // space to make a triangle 
            spacesToSkip = spacesToSkip - 2; 

            for (int k = 0; k <= n; k++) 
            { 
                int comb = combination(n, k); 
                String out = " " + comb; // pad to a length of 4 
                triangleString = triangleString + out.substring(out.length() - 4); 
            } 

            triangleString = triangleString + " "; 
            n++; 
        } 
    } 

    /** 
        Skip n spaces on a line. 
        @param n - the number of spaces to skip 
     */ 
    public void skip(int n) 
    { 
        for (int i = 0; i <= n; i++) 
            triangleString = triangleString + "\n"; 
    } 

    /** 
        Calculate n factorial. 
        @param n calculate the factorial of n 
        @return n! 

	*/ 
    public static int factorial(int n) 
    { 
        int product = 1; // accumulator for the running product 

        for (int i = 1; i <= n; i++) 
            product = product * i ; 
        return product; 
    } 
    /** 
        Calculate the number of combinations of n things taken 
        k at a time (n choose k). 
        @param n the number of items to choose from 
        @param k the number of items chosen 
        @return n choose k 
    */ 
    public static int combination(int n, int k) 
    { 
        int comb = factorial(n) / factorial(k) * factorial(n - k); 
        return comb; 
    } 

    public String toString() 
    { 
        return triangleString; 
    } 

    private String triangleString; 
}

/** File PascalTriangleTester.java */ 
import java.util.Scanner; 

public class PascalTriangleTester 
{ 
    public static void main(String[] args) 
    { 
        Scanner in = new Scanner(System.in); 
        System.out.print("Enter height: "); 
        int h = in.nextInt(); 

        PascalTriangle tri = new PascalTriangle(h); 

        System.out.println(tri.toString()); 

    } 
} 




What output do you get when you request a triangle with a height of 5?

	19.
	When the height is 5, we expect six rows. There aren't enough rows. To find out why, set a breakpoint at the line

skip(spacesToSkip); // space to make a triangle 
in the PascalTriangle constructor.

What is the value of n when the breakpoint is reached?


	20.
	Now run the program until it reaches the breakpoint again. What value do you expect n to have, and what value do you actually observe?


	21.
	The variable n is supposed to take the values 0, 1, 2, 3, 4, 5, but it actually jumped from 0 to 2.

If you like, run the program again to the breakpoint. You'll find that n is now 4. Apparently, n is incremented twice each time the loop is traversed.

Determine the reason and fix it. What fix did you make?


	22.
	Run your corrected version again with a height of 5. You should now have six rows of output, but the values are still wrong. What values do you get? How do you know they are wrong?


	23.
	To determine why the values are still wrong, set a breakpoint at the line

return comb;
in the combination method.

Run your program until the method is executed with the values n = 3, k = 1.

What is the value of comb? What should it be?


	24.
	C(3, 1) is 3! / (1! * 2!) = 6 / (1 * 2) = 3. Check why the value is computed incorrectly, and fix the computation. What fix did you apply?


	25.
	After fixing the error, run the test again. What values do you get?


	26.
	Is the program correct now?


Big Java / Java Concepts Lab 11

Implementing an Interface


The Comparable interface is a commonly used interface in Java. Look up the Comparable interface in the API documentation. 

	If you wanted to modify the BankAccount class so that it implements the Comparable<BankAccount> interface, what method(s) do you need to implement?

Give the method signatures, that is, the return type(s), the method name(s), and the method parameter(s).
	


	2.
	The compareTo method compares two parameters, the implicit and explicit parameter. The call

a.compareTo(b)
returns

· 1 if a is larger than b 

· -1 if a is smaller than b 

· 0 if a and b are the same 

Implement the compareTo method of the BankAccount class so that it compares the balances of the accounts. Some of the code has been provided for you:


public class BankAccount implements Comparable<BankAccount> 
{ 
    . . . 

    /** 
        Compares two bank accounts. 
        @param other the other BankAccount 
        @return 1 if this bank account has a greater balance than the other one, 
        -1 if this bank account is has a smaller balance than the other one, 
        and 0 if both bank accounts have the same balance 
    */ 
    public int compareTo(BankAccount other) 
    { 
        . . . 
    } 

    private double balance; 
} 


	3.
	The sort method of the Collections class can sort a list of objects of classes that implement the Comparable interface.

Here is the outline of the required code.


import java.util.ArrayList; 
import java.util.Collections; 
. . . 

// put bank accounts into a list 
ArrayList<BankAccount> list = new ArrayList<BankAccount>(); 
list.add(ba1); 
list.add(ba2); 
list.add(ba3); 

// call the library sort method 
Collections.sort(list); 

// print out the sorted list 
for (BankAccount b : list)  
   System.out.println(b.getBalance()); 
Using this outline, write a test program that sorts a list of five bank accounts.

Enter your test program here.


	4.
	What is the outcome of executing your test program? Remember that you must use the version of the BankAccount class that implements the Comparable interface.


	5.
	Change your compareTo method by switching the return values 1 and -1. Recompile and run the test program again. What is the outcome of executing your test program? Explain the changed output.


Using Interfaces for Callbacks 

	6.
	Modify the test program so that it sorts Rectangle objects: 

Rectangle rect1 = new Rectangle(5, 10, 20, 30); 
Rectangle rect2 = new Rectangle(10, 20, 30, 15); 
Rectangle rect3 = new Rectangle(20, 30, 45, 10); 

// put the rectangles into a list 
ArrayList<Rectangle> list = new ArrayList<Rectangle>(); 
list.add(rect1); 
list.add(rect2); 
list.add(rect3); 

// call the library sort method 
Collections.sort(list); 

// print out the sorted list 
for (Rectangle r : rectangles) 
    System.out.println(r.getWidth() + " " + r.getHeight()); 
When you run the program, you will get an error message. What is the error message? What is the reason for the error message?


	7.
	Unfortunately, you cannot modify the Rectangle class so that it implements the Comparable interface. The Rectangle class is part of the standard library, and you cannot modify library classes.

Fortunately, there is a second sort method that you can use to sort a list of objects of any class, even if the class doesn't implement the Comparable interface.


Comparator<Rectangle> comp = . . .;  

Collections.sort(list, comp); 
Comparator is an interface. Therefore, comp must be constructed as an object of some class that implements the Comparator interface.

What method(s) must that class implement? (Hint: Look up the Comparator interface in the API documentation.)


	8.
	Implement a class RectangleComparator whose compare method compares two rectangles.

Return

· 1 if the area of the first rectangle is larger than the area of the second rectangle 

· -1 if the area of the first rectangle is smaller than the area of the second rectangle 

· 0 if the two rectangles have the same area 

What is the code for your RectangleComparator class?

Part of the code has been provided for you below:

import java.util.Comparator; 
import java.awt.Rectangle; 

public class RectangleComparator implements Comparator<Rectangle> 
{ 
    /** 
    Compares two Rectangle objects. 
    @param r1 the first rectangle 
    @param r2 the second rectangle 
    @return 1 if the area of the first rectangle is larger than the area of 
    the second rectangle, -1 if the area of the first rectangle is 
    smaller than the area of the second rectangle or 0 if the two 
    rectangles have the same area 
*/ 
    public int compare(Rectangle r1, Rectangle r2) 
    { 
        . . . 
    } 
} 


	9.
	Write a test program that adds the three rectangles given previously to a list, constructs a rectangle comparator, sorts the list, and prints the sorted list.

What is your test program?


	10.
	What is the output of your test program?


	11.
	A very specialized class, such as the RectangleComparator, can be defined inside the method that uses it.

Reorganize your program so that the RectangleComparator class is defined inside the main method of your test class.

What is your main method now?


Event Handling

	12.
	A timer notifies a listener at regular time intervals. The time interval is given in milliseconds. The listener must implement the ActionListener interface. 

For example, the call


Timer t = new Timer(1000, listener); 
t.start(); 

causes the timer to call the actionPerformed method once per second.

To see the timer at work, install a listener that simply prints out the current time. To print out the current time call


import java.util.Date; 
. . . 
System.out.println(new Date()); 

Supply a class CurrentTimePrinter that implements the ActionListener interface and whose actionPerformed method prints the current time.

What is the code for the CurrentTimePrinter class?


	13.
	Now put together a test program that prints the current time once each second.

Construct a CurrentTimePrinter, construct and start a timer, and put up a message dialog so that the program user can quit the program.


JOptionPane.showMessageDialog(null, "Quit?"); 
System.exit(0); 

What is your test program?.


	14.
	The program of the preceding exercise keeps printing the time, once per second. In this exercise, you will modify the program so that it stops the timer after 15 seconds, restarts it after another 15 seconds, stops it after a further 15 seconds, and so on.

Of course, we will use a second timer for this purpose. Here is the implementation:


class TimerToggler implements ActionListener 
{ 
    public void actionPerformed(ActionEvent event) 
    { 
        if (t.isRunning()) 
            t.stop(); 
        else 
            t.restart(); 
     } 
} 

ActionListener listener2 = new TimerToggler(); 
Timer t2 = new Timer(15000, listener2); 
t2.start(); 

Add the code that defines t2 after the instruction for starting t and before displaying the option pane. Compile the code.

What compiler error do you get? Why? What can you do to avoid it?


	15.
	Fix your program so that the first timer is declared as final. Methods of inner classes can access only final local variables of the enclosing method.

Your program should now compile and run. Execute it for approximately one minute. What output do you get?


	16.
	It is a nuisance that the user must stop the program by clicking a button. Solve that problem by automatically stopping the program after two minutes (or 120,000 milliseconds). Simply make a timer listener that calls System.exit(0) in the actionPerformed method of its action listener.

Write the code for the third timer.


	17.
	Now add the code for your third timer to the program and remove the last two lines of main, that is, the message dialog display and the call to System.exit(0).

Compile your program and run it.

Does it work as expected? If not, why?


	18.
	The program exited immediately when exiting main, so the timers never ran.

To keep main alive, you'll need to add the message dialog back in. Simply add the line

JOptionPane.showMessageDialog(null, "Please wait"); 
to the end of main.

Now the program will run for two minutes, and then exit. What output do you get?


Big Java / Java Concepts Lab 12

Button Listeners

	1.
	Write a program where the background color of the panel can be controlled with buttons. You will supply three buttons labeled Red, Yellow, and Green in a panel. And then, change the panel's background color depending on what button was clicked. 

First, you will write a RedButtonListener class (it will be used as an inner class) whose actionPerformed method will be called whenever the "red" button is clicked.

Then, you will need to change the color of the panel background to Color.RED. You can change the background color of a panel using the setBackground method:

panel.setBackground(Color.RED);
What is the code of your RedButtonListener class? Don't forget that it has to implement ActionListener.


	2.
	Now, you will write the code needed to construct the three buttons, to construct the panel, to add the buttons to the panel, to add the panel to the frame and to show the frame.

The buttons won't do anything yet; listeners will be added in the next problem.

A sketch of how your program should look like has been provided for you:


import javax.swing.JButton; 
import javax.swing.JFrame; 
import javax.swing.JPanel; 
import java.awt.Color; 

public class ColorChanger 
{ 
    public static void main(String[] args) 
    { 
       JFrame frame = new JFrame(); 

       // The buttons (one for each color) 
       /* create the buttons here */ 

       // The panel that holds the user interface components 
       final JPanel panel = new JPanel(); 
       /* add each button to the panel here, using the "panel.add" method */ 
       frame.add(panel); // adds the panel to the frame 

       // The listener classes and listener objects will go here 
       /* do not add listener code yet */ 

       // Show the frame 
       frame.setSize(FRAME_WIDTH, FRAME_HEIGHT); 
       frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
       frame.setVisible(true); 
    } 

    private static final int FRAME_WIDTH = 400; 
    private static final int FRAME_HEIGHT = 100;
}
What is the code of your program?


	3.
	Buttons generate action events. In order for your program to listen to them, you need to install action listeners. When the red button is clicked, you want to change the color to red. You will use the class you created in problem 1 for that purpose.

Enhance your program by adding the listener class and creating a listener object. Don't forget to add the following import statements in your program:

import java.awt.event.ActionEvent; 
import java.awt.event.ActionListener; 

Use the code you created in problem 2, and add the class and a listener for the red button where it is indicated. The "Red" button will change the color to red. The other two buttons will do nothing. You will add listeners to the other buttons in the next problem.

Remember that you will need to create a listener object and then add it to the red button using the addActionListener method.

Write and test your program. What is the code?


	4.
	Now you will create listener classes and objects for the other two buttons, so that we can change the background color to yellow and green, respectively. You can copy and paste the code for the RedButtonListener class two times, and modify them to change the background color to yellow and green respectively.

Complete and test your program. Don't forget to create objects of the two new classes and add the listeners to the buttons.

What is the code for your program?


	5.
	It is silly to write three separate classes to change the background to red, yellow, or blue. Instead, you can create one listener class (ButtonListener) that will handle events on all three buttons. The target color should be part of the state of the ButtonListener. 
Implement the ButtonListener class, and then construct three objects of that class. Add these objects as listeners to the appropriate buttons:

ActionListener redListener = new ButtonListener(Color.RED);
redButton.addActionListener(redListener);

What is the code for your program?


	6.
	In your program, the panel variable is declared as final. Why?

Hint: If you don't know the answer, remove the final keyword, recompile, and study the error message.


Labels

	7.
	In this program, you will to put a label into the frame. The code for a label is: 

JLabel aLabel = new JLabel("The text goes here");
Write a graphical application in which the frame has a panel which has a label that displays the result of 10! (10 factorial). 

Calculate the factorial using the following class:

public class FactorialGenerator
{ 
   public FactorialGenerator() 
   { 
      count = 0;
      product = 1;
   }  
   public long getProduct() { return product; }
   public void next()
   {
      count++;
      product = product * count; 
   }
   public void next(int steps)
   {
      for (int i = 1; i <= steps; i++)
         next();
   }   

   private int count;
   private long product;
} 

What is the code for your program?


	8.
	Now modify the program so that factorials are computed one step at a time, by clicking a button. The current product value should be displayed on the label.

You will need to create a button and add it to the panel.

Add the code to construct a button, panel, and frame. Place the button and the label on the panel; then, add the panel to the frame and show the frame.

Run the program. Of course, the button doesn't do anything.

What is the code for your program?


	9.
	Now you will add a listener to the button so that it calls the next method of the FactorialGenerator and displays the product in the label. Modify the program as needed.

What is the code for your program?


	10.
	Now add a text field so the user can enter an integer, namely the number of multiplication steps in each button click. Don't forget to modify your button listener so that it parses the text in the text field and calls the next(int steps) method.

What is the code for your program?


Mouse Events

	11.
	A user interface component such as a panel can detect five types of mouse events. What are these events?


	12.
	This exercise focuses on "entered" and "exited" mouse events. Write a mouse listener class that prints "Entered" and "Exited" to System.out when the mouse has entered or exited the frame. Do nothing for the other three mouse event types. Call your class EnterExitListener. Remember that you need to implement the MouseListener interface.

What is the code of your listener class?


	13.
	Write a test program that tests your listener. You will need to add the listener to the frame using the addMouseListener method.
What is the code for your program?


	14.
	Test your program. What must be done to show the messages "Entered" and "Exited"?


	15.
	The previous program is a little dull. Make it more interesting. Rather than printing a message, change the background color of the frame. In the mouseEntered method, add the line

frame.getContentPane().setBackground(Color.GREEN);
and in the mouseExited method, add the line

frame.getContentPane().setBackground(Color.RED);
Make sure that your EnterExitListener is an inner class of the main method.

Compile and run your test program. When the mouse enters the frame, its background color should change to green. When the mouse leaves the frame, the background should turn red.

What is the code for your program?


	16.
	Why must the EnterExitListener be an inner class?

Hint: If you are unsure, make EnterExitListener into a regular class, compile, and study the error message.


Painting

	17.
	Write a component whose paintComponent method draws four lines:

1. From the point p to the top left corner

2. From the point p to the bottom left corner

3. From the point p to the top right corner

4. From the point p to the bottom right corner

Let p be the point with the coordinates (50, 100).

Call your component FourLineComponent.

Hint: Call getWidth() and getHeight() to get the x- and y-coordinates of the corner points.

If added to a frame and displayed, the component should look like this:

[image: image9.png]



What is the code for your component class?


	18.
	Now write a tester program that creates a frame, adds the component to the frame and displays it.

What is the code of your tester class?


	19.
	Now enhance the program so that the point p can be changed by a mouse click.

Make an instance variable of type Point2D.Double. Add a method to the component that allows you to set the point, so that it can be changed during the program execution. If you did not have a point instance field (or x and y instance fields) in the component, you will need to modify the paintComponent method too, so that the lines all have one end in this point.

What is the code of your modified component class?


	20.
	Write a MousePressListener class that implements the MouseListener interface. Its mousePressed method sets p to the point with x- and y-values of the mouse event.

Make sure that the mousePressed method calls the repaint() method on the component, after changing p. You can use the method getPoint to find out the position where the user clicked.
Add a MousePressListener as mouse listener to the tester program.

Run your program. Now you should be able to click the mouse and have the four lines meet at the point where you just clicked.

What is the code of your tester class?


	21.
	Why is it important to call repaint in the mouse press listener? What would happen if you didn't call repaint?

Try it out. Comment out the call to repaint, recompile, and try your program again. What happens?


Big Java / Java Concepts Lab 13

Inheritance


public class Card 

{ 

    public Card() 

    { 

        name = ""; 

    } 

    public Card(String n) 

    { 

        name = n; 

    } 

    public String getName() 

    { 

        return name; 

    } 

    public boolean isExpired() 

    { 

        return false; 

    } 

    public String format() 

    { 

        return "Card holder: " + name; 

    } 

    private String name; 

} 


Class


Data

		

IDCard


ID number

		

Calling Card


Card number, PIN

		

Driver License


Expiration year

		

	Write definitions for each of the subclasses. For each subclass, supply private instance variables. Leave the bodies of the constructors blank for now. 
	


Calling the Superclass Constructor

	2.
	Implement constructors for each of the three subclasses. Each constructor should call the superclass constructor to set the name. Here is one example:


public IDCard(String n, String id) 
{ 
    super(n); 
    idNumber = id; 
} 


Overriding Methods 

	3.
	Supply the implementation of the format method for the three subclasses. The methods should produce a formatted description of the card details. The subclass methods should call the superclass format method to get the formatted name of the cardholder.


	4.
	Devise another class, Billfold, which contains slots for two cards, card1 and card2, a method void addCard(Card) and a method String formatCards().

The addCard method checks if card1 is null. If so, it sets card1 to the new card. If not, it checks card2. If both cards are set already, the method has no effect.

Of course, formatCards invokes the format method on each non-null card and concatenates the resulting strings.

What is your Billfold class?


	5.
	Write a class with a test program that adds two objects of different subclasses of Card to a Billfold object. Print the results of the formatCards methods.

What is the code for your test program?

(Alternatively, if you use BlueJ, explain how you set up the Billfold object.)


	6.
	What is the output of your test program?


	7.
	Explain why the output of your program demonstrates polymorphism.


	8.
	The Card superclass defines a method isExpired, which always returns false. This method is not appropriate for the driver license. Supply a method DriverLicense.isExpired() that checks if the driver license is already expired (i.e., the expiration year is less than the current year).

To find out the current year, you can use the get method of the class Calendar. For example, if you create a Calendar as follows:
GregorianCalendar calendar = new GregorianCalendar();
Then, you can obtain the current year using

calendar.get(Calendar.YEAR)
What is the code for your isExpired method?


	9.
	The ID card and the phone card don't expire. What should you do to reflect this fact in your implementation?


	10.
	Add a method getExpiredCardCount, which counts the number of expired cards in the billfold, to the Billfold class.


	11.
	Write a test class that populates a billfold with a phone card and an expired driver license. Then call the getExpiredCardCount method. Run your test program to verify that your method works correctly.

What is your test program?


The toString method

	12.
	Define toString methods for the Card class and its three subclasses. The methods should print:

· the name of the class 

· the values of all instance fields (including inherited fields) 

Typical formats are:

Card[name=Edsger W. Dijkstra] 
CallingCard[name=Bjarne Stroustrup][number=4156646425,pin=2234]
Give the code for your toString methods.


The equals method

	13.
	Define equals methods for the Card class and its three subclasses. Cards are the same if the objects belong to the same class, and if the names and other information (such as the expiration year for driver licenses) match.

Give the code for your equals methods.


Protected access

	14.
	Change the Card class and give protected access to name. (a) Would that change simplify the toString method of the CallingCard class? How?
(b) Is this change advisable?


