CPS 109 Lab 6

Alexander Ferworn Updated Fall 03

Ryerson University

[image: image1.wmf]
School of Computer Science

CPS109

Lab 6

Chapter 5: Enhancing Classes

Lab Exercises
Topics

Lab Exercises

References

Tracing References

Parameter Passing

Changing People

Interfaces

A Modified MiniQuiz Class

Bank Account Transfers

Counting Transactions

Tracing References
The file Person.java defines a simple class that represents a person (a person has a name and an age). The file References1.java contains a program that instantiates three Person objects and then makes some modifications to the objects and their references.

· Carefully hand-trace the References1.java program. Draw a diagram to illustrate the three objects and the references to them and how these change as the program executes. Your trace should also show what the program prints.

· Now compile and run the program. Compare the results to your trace. If there are any differences, re-trace the program to understand what it is doing.

· Suppose the programmer meant to do a circular shift in reassigning the three people—that is he/she wanted to have the original person2 object become person1, the original person3 become person2 and the original person1 become person3. Revise the code to make this happen.

// **

// Person.java

//

// A simple class representing a person.

// ***

public class Person

{

 private String name;

 private int age;

 // --

 // Sets up a Person object with the given name and age.

 // --

 public Person (String name, int age)

 {

this.name = name;

this.age = age;

 }

 // --

 // Changes the name of the Person to the parameter newName.

 // --

 public void changeName(String newName)

 {

name = newName;

 }

 // ---

 // Changes the age of the Person to the parameter newAge.

 // ---

 public void changeAge (int newAge)

 {

age = newAge;

 }

 // ---

 // Returns the person's name and age as a string.

 // ---

 public String toString()

 {

return name + " - Age " + age;

 }

}

// ***

// References1.java

//

// Illustrates aliases and references

// ***

import Person;

public class References1

{

 public static void main (String[] args)

 {

Person person1 = new Person ("Rachel", 6);

Person person2 = new Person ("Elly", 4);

Person person3 = new Person ("Sarah", 19);

System.out.println ("\nThe three original people...");

System.out.println (person1 + ", " + person2 + ", " + person3);

// Reassign people

person1 = person2;

person2 = person3;

person3 = person1;

System.out.println("\nThe three people reassigned...");

System.out.println (person1 + ", " + person2 + ", " + person3);

System.out.println();

System.out.println ("Changing the second name to Bozo...");

person2.changeName ("Bozo");

System.out.println (person1 + ", " + person2 + ", " + person3);

System.out.println();

System.out.println ("Changing the third name to Clarabelle...");

person3.changeName ("Clarabelle");

System.out.println (person1 + ", " + person2 + ", " + person3);

System.out.println();

System.out.println ("Changing the first name to Harpo...");

person1.changeName("Harpo");

System.out.println (person1 + ", " + person2 + ", " + person3);

 }

}

The file References2.java contains another program involving Person objects. This one illustrates the difference between assignments involving objects and assignments involving primitive values.

· Hand trace References2.java.

· Run the program to check your trace. If your trace was incorrect, study the program more carefully to understand what it is doing.

· Why do the three objects stay the same for all the different assignments but the three integers do not?

// ***

// References2.java

//

// Illustrates references versus primitive variables

// ***

import cs1.Keyboard;

import Person;

public class References2

{

 public static void main (String[] args)

 {

 int age1, age2, age3;

 System.out.println ("Enter three ages...");

 age1 = Keyboard.readInt();

 age2 = Keyboard.readInt();

 age3 = Keyboard.readInt();

 // Instantiate three Person objects with the ages read in

 Person person1 = new Person ("Rachel", age1);

 Person person2 = new Person ("Elly", age2);

 Person person3 = new Person ("Sarah", age3);

 System.out.println();

 System.out.println ("The original three people...");

 System.out.println (person1 + ", " + person2 + ", " + person3);

 // Reassign ages in the int varaiables

 age1 = age2;

 age3 = age2;

 // Reassign the Person objects

 person1 = person2;

 person3 = person2;

 System.out.println ();

 System.out.println ("The changed values are...");

 System.out.println ("Ages (ints): " + age1 + ", " + age2 + ", " + age3);

 System.out.println (person1 + ", " + person2 + ", " + person3);

 // Make some changes to the integer values and corresponding objects

 System.out.println ("\nChanging the second age to 99...");

 age2 = 99;

 person2.changeAge(age2);

 System.out.println ("The changed values are...");

 System.out.println ("Ages (ints): " + age1 + ", " + age2 + ", " + age3);

 System.out.println (person1 + ", " + person2 + ", " + person3);

 System.out.println();

 System.out.println ("Changing the first age to 100...");

 age1 = 100;

 person1.changeAge(age1);

 System.out.println ("The changed values are...");

 System.out.println ("Ages (ints): " + age1 + ", " + age2 + ", " + age3);

 System.out.println (person1 + ", " + person2 + ", " + person3);

 }

}

Changing People
The file ChangingPeople.java contains a program that illustrates parameter passing. The program uses Person objects defined in the file Person.java. (See code in Tracing References Lab Exercises.) Do the following:

1.
Trace the execution of the program using diagrams similar to those in Figure 5.3 of the text (which is a trace of the program in Listings 5.1 - 5.3). Also show what is printed by the program.

2.
Compile and run the program to see if your trace was correct.

3.
Modify the changePeople method so that it does what the documentation says it does; that is, the two Person objects passed in as actual parameters are actually changed.

// **

// ChangingPeople.java

//

// Demonstrates parameter passing -- contains a method that should

// change to Person objects.

// **

import Person;

public class ChangingPeople

{

 // ---

 // Sets up two person objects, one integer, and one String

 // object. These are sent to a method that should make

 // some changes.

 // ---

 public static void main (String[] args)

 {

Person person1 = new Person ("Sally", 13);

Person person2 = new Person ("Sam", 15);

int age = 21;

String name = "Jill";

System.out.println ("\nParameter Passing... Original values...");

System.out.println ("person1: " + person1);

System.out.println ("person2: " + person2);

System.out.println ("age: " + age + "\tname: " + name + "\n");

changePeople (person1, person2, age, name);

System.out.println ("\nValues after calling changePeople...");

System.out.println ("person1: " + person1);

System.out.println ("person2: " + person2);

System.out.println ("age: " + age + "\tname: " + name + "\n");

 }

 // ---

 // Change the first actual parameter to "Jack - Age 101" and change

 // the second actual parameter to be a person with the age and

 // name given in the third and fourth parameters.

 // ---

 public static void changePeople(Person p1, Person p2, int age, String name)

 {

System.out.println ("\nInside changePeople... Original parameters...");

System.out.println ("person1: " + p1);

System.out.println ("person2: " + p2);

System.out.println ("age: " + age + "\tname: " + name + "\n");

// Make changes

Person p3 = new Person (name, age);

p2 = p3;

name = "Jack";

age = 101;

p1.changeName (name);

p1.changeAge (age);

// Print changes

System.out.println ("\nInside changePeople... Changed values...");

System.out.println ("person1: " + p1);

System.out.println ("person2: " + p2);

System.out.println ("age: " + age + "\tname: " + name + "\n");

 }

}

 Bank Account Transfers
File Account.java contains a definition for a simple bank account class with methods to withdraw, deposit, get the balance and account number, and print a summary. (This is very much like the class that was extended in a lab exercise in Chapter 4.) Save it to your directory and study it to see how it works. Then write the following additional code:

1.
Add a method public void transfer(Account acct, double amount) to the Account class that allows the user to transfer funds from one bank account to another. If acct1 and acct2 are Account objects, then the call acct1.transfer(acct2,957.80) should transfer $957.80 from acct1 to acct2.

2.
Write a class TransferTest with a main method that creates two bank account objects and enters a loop that does the following:

· Asks if the user would like to transfer from account1 to account2, transfer from account2 to account1, or quit.

· If a transfer is chosen, asks the amount of the transfer, carries out the operation, and prints the new balance for each account.

· Repeats until the user asks to quit, then prints a summary for each account.

//***

// Account.java

//

// A bank account class with methods to deposit, withdraw,

// and check the balance.

//***

import cs1.Keyboard;

public class Account

{

 private double balance;

 private String name;

 private long acctNum;

 private static int numDeposits;

 private static int numWithdrawals;

 private static int amtDeposits;

 private static int amtWithdrawals;

 //--

 //Constructor -- initializes balance, owner, and account number

 //--

 public Account(double initBal, String owner, long number)

 {

 balance = initBal;

 name = owner;

 acctNum = number;

 }

 //--

 // Checks to see if balance is sufficient for withdrawal.

 // If so, decrements balance by amount; if not, prints message.

 //--

 public void withdraw(double amount)

 {

 if (balance >= amount)

{

 balance -= amount;

 numWithdrawals++;

 amtWithdrawals += amount;

}

 else

 System.out.println("Insufficient funds");

 }

 //--

 // Adds deposit amount to balance.

 //--

 public void deposit(double amount)

 {

 balance += amount;

 numDeposits++;

 amtDeposits += amount;

 }

 //--

 // Returns balance.

 //--

 public double getBalance()

 {

 return balance;

 }

 //--

 // Returns account number

 //--

 public double getAcctNumber()

 {

 return acctNum;

 }

 //--

 // Prints account number, name, and balance

 //--

 public void printSummary()

 {

 System.out.println("Account number: " + acctNum);

 System.out.println("Account owner: " + name);

 System.out.println("Account balance: " + balance);

 }

}

Counting Transactions
File Account.java (See the previous exercise.) contains a definition for a simple bank account class with methods to withdraw, deposit, get the balance and account number, and print a summary. (This is very much like the class that was extended in a lab exercise in Chapter 4.) Save it to your directory and study it to see how it works.

Suppose the bank wanted to keep track of the total number of deposits and withdrawals (separately) for each day, and the total amount deposited and withdrawn. Write code to do this as follows:

1.
Add four private static variables to the Account class, one to keep track of each value above (number and total amount of deposits, number and total of withdrawals). Note that since these variables are static, all of the Account objects share them. This is in contrast to the instance variables that hold the balance, name, and account number; each Account has its own copy of these. Recall that numeric static and instance variables are initialized to 0 by default.

2.
Add public methods to return the values of each of the variables you just added, e.g., public static int getNumDeposits().

3.
Modify the withdraw and deposit methods to update the appropriate static variables at each withdrawal and deposit

4.
File ProcessTransactions.java contains a program that creates and initializes two Account objects and enters a loop that allows the user to enter transactions for either account until asking to quit. Modify this program as follows:

· After the loop, print the total number of deposits and withdrawals and the total amount of each. You will need to use the Account methods that you wrote above. Test your program.

· Imagine that this loop contains the transactions for a single day. Embed it in a loop that allows the transactions to be recorded and counted for many days. At the beginning of each day print the summary for each account, then have the user enter the transactions for the day. When all of the transactions have been entered, print the total numbers and amounts (as above), then reset these values to 0 and repeat for the next day. Note that you will need to add methods to reset the variables holding the numbers and amounts of withdrawals and deposits to the Account class. Think: should these be static or instance methods?

//***

// ProcessTransactions.java

//

// A class to process deposits and withdrawals for two bank

// accounts for a single day.

//***

import cs1.Keyboard;

import Account;

public class ProcessTransactions

{

 public static void main(String[] args){

Account acct1, acct2; //two test accounts

char keepGoing = 'y'; //more transactions?

char action; //deposit or withdraw

double amount; //how much to deposit or withdraw

long acctNumber; //which account to access

//Create two accounts

acct1 = new Account(1000, "Sue", 123);

acct2 = new Account(1000, "Joe", 456);

System.out.println("The following accounts are available:\n");

acct1.printSummary();

System.out.println();

acct2.printSummary();

while (keepGoing == 'y' || keepGoing == 'Y')

 {

//get account number, what to do, and amount

System.out.print

("\nEnter the number of the account you would like to access: ");

acctNumber = Keyboard.readLong();

System.out.print

("Would you like to make a deposit (D) or withdrawal (W)? ");

action = Keyboard.readChar();

System.out.print("Enter the amount: ");

amount = Keyboard.readDouble();

if (amount > 0)

 if (acctNumber == acct1.getAcctNumber())

if (action == 'w' || action == 'W')

 acct1.withdraw(amount);

else if (action == 'd' || action == 'D')

 acct1.deposit(amount);

else

 System.out.println("Sorry, invalid action.");

 else if (acctNumber == acct2.getAcctNumber())

if (action == 'w' || action == 'W')

 acct1.withdraw(amount);

else if (action == 'd' || action == 'D')

 acct1.deposit(amount);

else

 System.out.println("Sorry, invalid action.");

 else

System.out.println("Sorry, invalid account number.");

else

System.out.println("Sorry, amount must be > 0.");

System.out.print("\nMore transactions? (y/n)");

keepGoing = Keyboard.readChar();

 }

//Print number of deposits

//Print number of withdrawals

//Print total amount of deposits

//Print total amount of withdrawals

 }

}

6
Chapter 1: Computer Systems
Chapter 5: Enhancing Classes
10

_959771044.doc
[image: image1..pict]

