CPS 109 Lab 7

Alexander Ferworn Updated Fall 03

Ryerson University

[image: image1.wmf]
School of Computer Science

CPS109

Lab 7

Chapter 6: Arrays

Lab Exercises
Topics

Lab Exercises

One-Dimensional Arrays

Tracking Sales

Grading Quizzes

Reversing an Array

Searching and Sorting in an Integer List

Adding To and Removing From an Integer List

Two-Dimensional Arrays

Magic Squares

Arrays of Objects

A Shopping Cart

Tracking Sales
File Sales.java contains a Java program that prompts for and reads in the sales for each of 5 salespeople in a company. It then prints out the id and amount of sales for each salesperson and the total sales. Study the code, then compile and run the program to see how it works. Now modify the program as follows:

1.
Compute and print the average sale. (You can compute this directly from the total; no loop is necessary.)

2.
Find and print the maximum sale. Print both the id of the salesperson with the max sale and the amount of the sale, e.g., "Salesperson 3 had the highest sale with $4500." Note that you don't need another loop for this; you can do it in the same loop where the values are read and the sum is computed.

3.
Do the same for the minimum sale.

4.
After the list, sum, average, max and min have been printed, ask the user to enter a value. Then print the id of each salesperson who exceeded that amount, and the amount of their sales. Also print the total number of salespeople whose sales exceeded the value entered.

5.
The salespeople are objecting to having an id of 0—no one wants that designation. Modify your program so that the ids run from 1–5 instead of 0–4. Do not modify the array—just make the information for salesperson 1 reside in array location 0, and so on.

6.
Instead of always reading in 5 sales amounts, at the beginning ask the user for the number of sales people and then create an array that is just the right size. The program can then proceed as before.

// **

// Sales.java

//

// Reads in and stores sales for each of 5 salespeople. Displays

// sales entered by salesperson id and total sales for all salespeople.

//

// **

import cs1.Keyboard;

public class Sales

{

 public static void main(String[] args)

 {

final int SALESPEOPLE = 5;

int[] sales = new int[SALESPEOPLE];

int sum;

for (int i=0; i<sales.length; i++)

 {

System.out.print("Enter sales for salesperson " + i + ": ");

sales[i] = Keyboard.readInt();

 }

System.out.println("\nSalesperson Sales");

System.out.println("--------------------");

sum = 0;

for (int i=0; i<sales.length; i++)

 {

System.out.println(" " + i + " " + sales[i]);

sum += sales[i];

 }

System.out.println("\nTotal sales: " + sum);

 }

}

Grading Quizzes
Write a program that grades multiple-choice quizzes as follows:

· Ask the user how many questions are in the quiz.

· Ask the user to enter the key (that is, the correct answers). There should be one answer for each question in the quiz, and each answer should be a lower-case letter. They can be entered on a single line, e.g., abbacdeacb might be the key for a 10-question quiz. You will need to store the key in an array.

· Ask the user to enter the answers for the quiz to be graded. As for the key, these can be entered on a single line. Again there needs to be one for each question. Note that these answers do not need to be stored; each answer can simply be compared to the key as it is entered.

· When the user has entered all of the answers to be graded, print the number correct and the percent correct.

When this works, add a loop so that the user can grade any number of quizzes with a single key. After the results have been printed for each quiz, ask "Grade another quiz? (y/n)."

Reversing an Array

Write a program that prompts the user for an integer, then asks the user to enter that many values. Store these values in an array and print the array. Then reverse the array elements so that the first element becomes the last element, the second element becomes the second to last element, and so on, with the old last element now first. Do not just reverse the order in which they are printed; actually change the way they are stored in the array. Do not create a second array; just rearrange the elements within the array you have. (Hint: Swap elements that need to change places.) When the elements have been reversed, print the array again.

Searching and Sorting In An Integer List
File IntegerList.java contains a Java class representing a list of integers. The following public methods are provided:

· IntegerList(int size)—creates a new list of size elements. Elements are initialized to 0.

· void randomize()—fills the list with random integers between 1 and 100, inclusive.

· void print()—prints the array elements and indices

· int search(int target)—looks for value target in the list using a sequential search algorithm. Returns the index where it first appears if it is found, -1 otherwise.

· void selectionSort()—sorts the lists into ascending order using the selection sort algorithm.

File IntegerListTest.java contains a Java program that provides menu-driven testing for the IntegerList class. Copy both files to your directory, and compile and run IntegerListTest to see how it works. For example, create a list, print it, and search for an element in the list. Does it return the correct index? Now look for an element that is not in the list. Now sort the list and print it to verify that it is in sorted order.

Modify the code in these files as follows:

1.
Add a method void sortDecreasing() to the IntegerList class that sorts the list into decreasing (instead of increasing) order. Use the selection sort algorithm, but modify it to sort the other way. Be sure you change the variable names so they make sense!

Add an option to the menu in IntegerListTest to test your new method.

2.
Add a method void replaceFirst(int oldVal, int newVal) to the IntegerList class that replaces the first occurrence of oldVal in the list with newVal. If oldVal does not appear in the list, it should do nothing (but it's not an error). If oldVal appears multiple times, only the first occurrence should be replaced. Note that you already have a method to find oldVal in the list; use it!

Add an option to the menu in IntegerListTest to test your new method.

3.
Add a method void replaceAll(int oldVal, int newVal) to the IntegerList class that replaces all occurrences of oldVal in the list with newVal. If oldVal does not appear in the list, it should do nothing (but it's not an error). Does it still make sense to use the search method like you did for replaceFirst, or should you do your own searching here? Think about this.

Add an option to the menu in IntegerListTest to test your new method.

// **

// IntegerList.java

//

// Define an IntegerList class with methods to create, fill,

// sort, and search in a list of integers.

//

// **

import cs1.Keyboard;

public class IntegerList{

 int[] list; //values in the list

 //---

 //create a list of the given size

 //---

 public IntegerList(int size)

 {

list = new int[size];

 }

 //---

 //fill array with integers between 1 and 100, inclusive

 //---

 public void randomize()

 {

for (int i=0; i<list.length; i++)

 list[i] = (int)(Math.random() * 100) + 1;

 }

 //---

 //print array elements with indices

 //---

 public void print()

 {

for (int i=0; i<list.length; i++)

 System.out.println(i + ":\t" + list[i]);

 }

 //---

 //return the index of the first occurrence of target in the list.

 //return -1 if target does not appear in the list

 //---

 public int search(int target)

 {

int location = -1;

for (int i=0; i<list.length && location == -1; i++)

 if (list[i] == target)

location = i;

return location;

 }

 //---

 //sort the list into ascending order using the selection sort algorithm

 //---

 public void selectionSort()

 {

int minIndex;

for (int i=0; i < list.length-1; i++)

 {

//find smallest element in list starting at location i

minIndex = i;

for (int j = i+1; j < list.length; j++)

 if (list[j] < list[minIndex])

 minIndex = j;

//swap list[i] with smallest element

int temp = list[i];

list[i] = list[minIndex];

list[minIndex] = temp;

 }

 }

}

// **

// IntegerListTest.java

// Provide a menu-driven tester for the IntegerList class.

// **

import cs1.Keyboard;

public class IntegerListTest{

static IntegerList list = new IntegerList(10);

 //---

 // Create a list, then repeatedly print the menu and do what the

 // user asks until they quit

 //---

 public static void main(String[] args)

 {

printMenu();

int choice = Keyboard.readInt();

while (choice != 0)

 {

dispatch(choice);

printMenu();

choice = Keyboard.readInt();

 }

 }

 //---

 // Do what the menu item calls for

 //---

 public static void dispatch(int choice)

 {

int loc;

switch(choice)

 {

 case 0:

System.out.println("Bye!");

break;

 case 1:

System.out.println("How big should the list be?");

int size = Keyboard.readInt();

list = new IntegerList(size);

list.randomize();

break;

 case 2:

list.selectionSort();

break;

 case 3:

System.out.print("Enter the value to look for: ");

loc = list.search(Keyboard.readInt());

if (loc != -1)

 System.out.println("Found at location " + loc);

else

 System.out.println("Not in list");

break;

 case 4:

list.print();

break;

 default:

System.out.println("Sorry, invalid choice");

 }

 }

 //---

 // Print the user's choices

public static void printMenu()

 {

System.out.println("\n Menu ");

System.out.println(" ====");

System.out.println("0: Quit");

System.out.println("1: Create a new list (** do this first!! **)");

System.out.println("2: Sort the list using selection sort");

System.out.println("3: Find an element in the list using sequential search");

System.out.println("4: Print the list");

System.out.print("\nEnter your choice: ");

 }

}

Adding To and Removing From an Integer List
File IntegerList.java (See the previous exercises.) contains a Java class representing a list of integers. The following public methods are provided:

· IntegerList(int size)—creates a new list of size elements. Elements are initialized to 0.

· void randomize()—fills the list with random integers between 1 and 100, inclusive.

· void print()—prints the array elements and indices

· int search(int target)—looks for value target in the list using a sequential search algorithm. Returns the index where it first appears if it is found, -1 otherwise.

· void selectionSort()—sorts the lists into ascending order using the selection sort algorithm.

File IntegerListTest.java (See the previous exercises.) contains a Java program that provides menu-driven testing for the IntegerList class. Copy both files to your directory, and compile and run IntegerListTest to see how it works. For example, create a list, print it, and use sequential search to look for an element in the list. Does it return the correct index? Now look for an element that is not in the list. Now sort the list and print it to verify that it is in sorted order.

It is often necessary to add items to or remove items from a list. When the list is stored in an array, one way to do this is to create a new array of the appropriate size each time the number of elements changes, and copy the values over from the old array. However, this is rather inefficient. A more common strategy is to choose an initial size for the array and add elements until it is full, then double its size and continue adding elements until it is full, and so on. (It is also possible to decrease the size of the array if it falls under, say, half full, but we won't do that in this exercise.) The CDCollection class in Listing 6.8 of the text uses this strategy—it keeps track of the current size of the array and the number of elements already stored in it, and method addCD calls increaseSize if the array is full. Study that example.

1.
Add this capability to the IntegerList class. You will need to add an increaseSize method plus instance variables to hold the current number of integers in the list and the current size of the array. Since you do not have any way to add elements to the list, you won't need to call increaseSize yet..

2.
Add a method void addElement(int newVal) to the IntegerList class that adds an element to the list. At the beginning of addElement, check to see if the array is full. If so, call increaseSize before you do anything else.

Add an option to the menu in IntegerListTest to test your new method.

3.
Add a method void removeFirst(int newVal) to the IntegerList class that removes the first occurrence of a value from the list. If the value does not appear in the list, it should do nothing (but it's not an error). Removing an item should not change the size of the array, but note that the array values do need to remain contiguous, so when you remove a value you will have to shift everything after it down to fill up its space. Also remember to decrement the variable that keeps track of the number of elements.

Add an option to the menu in IntegerListTest to test your new method.

4.
Add a method removeAll(int newVal) to the IntegerList class that removes all occurrences of a value from the list. If the value does not appear in the list, it should do nothing (but it's not an error).

Add an option to the menu in IntegerListTest to test your new method.

5.
Add a method void addInOrder(int newVal) to the IntegerList class that assumes that the list is sorted in increasing order and adds the given element in its correct (sorted) position. So if the list contained the values 10 20 30 40 50 and you added 25, the new list would be 10 20 25 30 40 50. Don't just stick the value on the end and then sort—sorting is expensive! Instead, look through the list, figure out where the new value should go and put it there, moving everything after it down to make room for it. As for addElement, you may need to increase the size of the array (determine this and do it first if necessary).

Add an option to the menu in IntegerListTest to test your new method.

Magic Squares
One interesting application of two-dimensional arrays is magic squares. A magic square is a square matrix in which the sum of every row, every column, and both diagonals is the same. Magic squares have been studied for many years, and there are some particularly famous magic squares. In this exercise you will write code to determine whether a square is magic.

File Square.java contains the shell for a class that represents a square matrix. It contains headers for a constructor that gives the size of the square and methods to read values into the square, print the square, find the sum of a given row, find the sum of a given column, find the sum of the main (or other) diagonal, and determine whether the square is magic. The read method is given for you; you will need to write the others.

File SquareTest.java contains the shell for a program that reads input for squares and tells whether each is a magic square. Following the comments, fill in the remaining code. Run your program on file magicData (the program reads from the standard input, so you'll need to redirect the standard input to the file). You should find that the first, second, and third squares in the input are magic, and that the rest (fourth through seventh) are not. Note that the -1 at the bottom tells the test program to stop reading.

// **

// Square.java

// Define a Square class with methods to create and read in

// info for a square matrix and to compute the sum of a row,

// a col, either diagonal, and whether it is magic.

// **

import cs1.Keyboard;

public class Square

{

 int[][] square;

 //--------------------------------------

 //create new square of given size

 //--------------------------------------

 public Square(int size){

 }

 //--------------------------------------

 //return the sum of the values in the given row

 //--------------------------------------

 public int sumRow(int row){

 }

 //--------------------------------------

 //return the sum of the values in the given column

 //--------------------------------------

 public int sumCol(int col){

 }

 //--------------------------------------

 //return the sum of the values in the main diagonal

 //--------------------------------------

 public int sumMainDiag(){

 }

 //--------------------------------------

 //return the sum of the values in the other ("reverse") diagonal

 //--------------------------------------

 public int sumOtherDiag(){

 }

 //--------------------------------------

 //return true if the square is magic (all rows, cols, and diags have

 //same sum), false otherwise

 //--------------------------------------

 public boolean magic(){

 }

 //--------------------------------------

 //read info into the square from the standard input.

 //--------------------------------------

 public void readSquare(){

 for (int row = 0; row < square.length; row++)

for (int col = 0; col < square.length; col ++)

 square[row][col] = Keyboard.readInt();

 }

 //--------------------------------------

 //print the contents of the square, neatly formatted

 //--------------------------------------

 public void printSquare(){

 }

}
// **

// SquareTest.java

//

// Uses the Square class to read in square data and tell if

// each square is magic.

//

// **

import cs1.Keyboard;

public class SquareTest

{

 public static void main(String[] args)

 {

int count = 1; //count which square we're on

int size = Keyboard.readInt(); //size of next square

//Expecting -1 at bottom of input file

while (size != -1)

 {

//create a new Square of the given size

//call its read method to read the values of the square

System.out.println("\n******** Square " + count + " ********");

//print the square

//print the sums of its rows

//print the sums of its columns

//print the sum of the main diagonal

//print the sum of the other diagonal

//determine and print whether it is a magic square

//get size of next square

size = Keyboard.readInt();

 }

 }

}

magicData

3

8 1 6

3 5 7

4 9 2

7

30 39 48 1 10 19 28

38 47 7 9 18 27 29

46 6 8 17 26 35 37

5 14 16 25 34 36 45

13 15 24 33 42 44 4

21 23 32 41 43 3 12

22 31 40 49 2 11 20

4

48 9 6 39

27 18 21 36

15 30 33 24

12 45 42 3

3

6 2 7

1 5 3

2 9 4

4

3 16 2 13

6 9 7 12

10 5 11 8

15 4 14 1

5

17 24 15 8 1

23 5 16 14 7

 4 6 22 13 20

10 12 3 21 19

11 18 9 2 25

7

30 39 48 1 10 28 19

38 47 7 9 18 29 27

46 6 8 17 26 37 35

5 14 16 25 34 45 36

13 15 24 33 42 4 44

21 23 32 41 43 12 3

22 31 40 49 2 20 11

-1

A Shopping Cart
In this exercise you will complete a class that implements a shopping cart as an array of items. The file Item.java contains the definition of a class named Item that models an item one would purchase. An item has a name, price, and quantity (the quantity purchased). The file ShoppingCart.java implements the shopping cart as an array of Item objects.

1.
Complete the ShoppingCart class by doing the following:

a.
Declare an instance variable cart to be an array of Items and instantiate cart in the constructor to be an array holding capacity Items.

b.
Fill in the code for the increaseSize method. Your code should be similar to that in Listing 6.8 of the text but instead of doubling the size just increase it by 3 elements.

c.
Fill in the code for the addToCart method. This method should add the item to the cart and update the totalPrice instance variable (note this variable takes into account the quantity).

d.
Compile your class.

2. Write a program that simulates shopping. The program should have a loop that continues as long as the user wants to shop. Each time through the loop read in the name, price, and quantity of the item the user wants add to the cart. After adding an item to the cart, the cart contents should be printed. After the loop print a "Please pay ..." message with the total price of the items in the cart.

// ***

// Item.java

// Represents an item in a shopping cart.

// ***

import java.text.NumberFormat;

public class Item{

 private String name;

 private double price;

 private int quantity;

 // ---

 // Create a new item with the given attributes.

 // ---

 public Item (String itemName, double itemPrice, int numPurchased)

 {

name = itemName;

price = itemPrice;

quantity = numPurchased;

 }

 // ---

 // Return a string with the information about the item

 // ---

 public String toString ()

 {

NumberFormat fmt = NumberFormat.getCurrencyInstance();

return (name + "\t" + fmt.format(price) + "\t" + quantity + "\t"

+ fmt.format(price*quantity));

 }

 // ---

 // Returns the unit price of the item

 // ---

 public double getPrice()

 {

return price;

 }

 // ---

 // Returns the name of the item

 // ---

 public String getName()

 {

return name;

 }

 // ---

 // Returns the quantity of the item

 // ---

 public int getQuantity()

 {

return quantity;

 }

}

**

// ShoppingCart.java

//

// Represents a shopping cart as an array of items

// **

import Item;

import java.text.NumberFormat;

public class ShoppingCart

{

 private int itemCount; // total number of items in the cart

 private double totalPrice; // total price of items in the cart

 private int capacity; // current cart capacity

 // ---

 // Creates an empty shopping cart with a capacity of 5 items.

 // ---

 public ShoppingCart()

 {

capacity = 5;

itemCount = 0;

totalPrice = 0.0;

 }

 // ---

 // Adds an item to the shopping cart.

 // ---

 public void addToCart(String itemName, double price, int quantity)

 {

 }

 // ---

 // Returns the contents of the cart together with

 // summary information.

 // ---

 public String toString()

 {

NumberFormat fmt = NumberFormat.getCurrencyInstance();

String contents = "\nShopping Cart\n";

contents += "\nItem\t\tUnit Price\tQuantity\tTotal\n";

for (int i = 0; i < itemCount; i++)

 contents += cart[i].toString() + "\n";

contents += "\nTotal Price: " + fmt.format(totalPrice);

contents += "\n";

return contents;

 }

 // ---

 // Increases the capacity of the shopping cart by 3

 // ---

 private void increaseSize()

 {

 }

}
6
Chapter 1: Computer Systems
Chapter 6: Arrays
12

_959771044.doc
[image: image1..pict]

