

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Standard Test Methods for Emergency Response Robots

Adam Jacoff Program Manager/Test Director (301-975-4235, <u>adam.jacoff@nist.gov</u>)

Intelligent Systems Division National Institute of Standards and Technology Gaithersburg, MD 20899

http://www.isd.mel.nist.gov/US&R_Robot_Standards/ usar.robots@nist.gov

What Must Response Robots Do? (mobility, power, sensors, communications, operator interfaces)

What are the requirements? How can we quantify robot performance in specific areas? How can we abstract domain challenges? How can we make them reproducible, repeatable?

Performance Evaluation of Mobile Robots

Requires knowledge of robot technologies and application domain

Provides researchers with concrete development goals

Multi-disciplinary

Collaboration

Maximize coverage, redundancy, efficiency among(heterogeneous) robot teams High level human/robot interactions

Autonomy

Mixed-initiative modes to limit human interactions, improve robot survivability

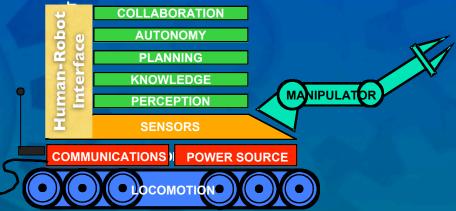
Mapping and Planning

Negotiate obstacles, time-critical decisions, trade-offs

Knowledge Representation

A priori knowledge/skills (traversability) Gained information (3-D spatial maps)

Sensory Perception


Navigation, hazard detection, goal id<u>entification</u> Sensor fusion to provide robust performance <

Human-Robot Interaction

Remote situational awareness, operator workload, management of multiple-robots, interface standardization

Locomotion

Types/Limits of mobility, negotiation of unstructured environment

Toward Performance Standards for US&R and EOD Robots

Response Robot Evaluation Exercises

Number:	96
Type:	SENSING
Sub-Type:	REAL-TIME COLOR VIDEO
Requirement:	SYSTEM ACUITY - NEAR
Metric:	MILLIMETERS
	is requirement captures the responders' expectation to use

TEST

video for key tasks such as maneuvering (hence the real-time emphasis), object identification (hence the color emphasis), and detailed inspection (hence the emphasis on short-range system acuity). The responders noted the need to consider the entire system, including possible communications signal degradation and display quality, when testing this capability. They also noted that this requirement is closely tied to the need for adjustable illumination to avoid washing out the image of close objects. The responders made no distinction regarding tethered or wireless implementations to address this requirement. **Test Method: SEE REAL-TIME VISION SYSTEM ACUITY**

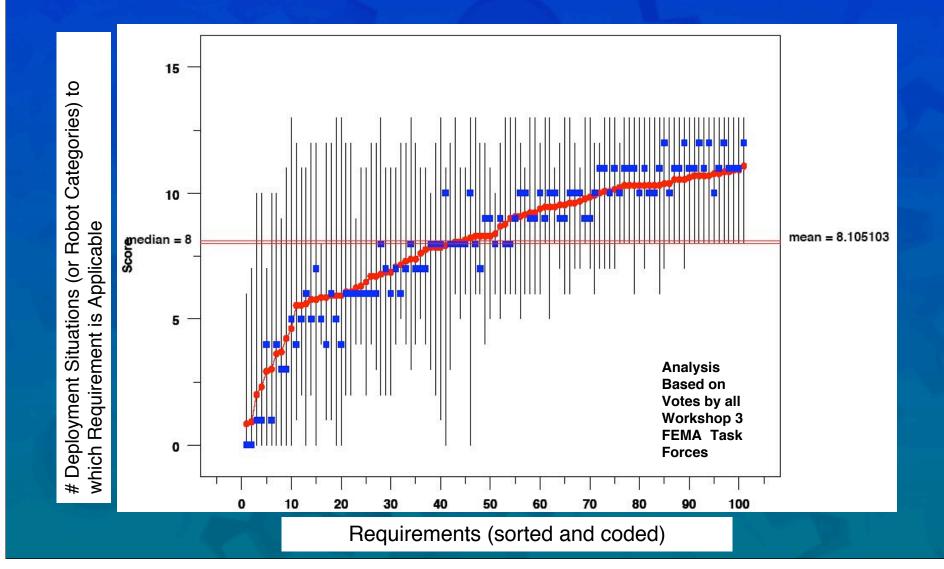
Robot Requirements Capture Process

(Integrated Product and Process Development Approach)

	Scenario A	Scenario B	Scenario C
Description	Upper stories of a multi-story pancake collapse	Subsurface voids	US&R Type II
Characteristics	Soft stories in the middle, undetermined stability, uneven terrain, sloped floor with holes, variable debris size, high hazmat potential, and poor visibility	Downwardly accessible void spaces, twisted/turning access (i.e., searchcam can't reach or turn necessary corners), variety of materials, complex orientations of support surfaces, sufficiently complex to cause spatial disorientation, hot, may be wet, high hazmat potential, and poor visibility	Rapid extraction of many non- ambulatory live victims from a contaminated (WMD / CBRNE) environment in a large urban area. This assumes that explosions or collapses have not compromised structures. Sample areas include malls, stadiums, several city blocks, etc. Teams may be pre-deployed.
Representative Image			

Robot Requirements Hierarchy (103 total)

🔀 Requirement Tree: 1 🖉 🗹	🔀 Requirement Details: 1 🛛 🖓 🗹	
<u>V</u> iew <u>E</u> dit	Data Fields Text Fields	
	Rgmt Number:	
Sectomer Requirement	Name: Proficiency education 👻	
🛛 🙀 Constructed		
💡 🛃 Human-System Interaction	How Measured: Hours annually	
🖉 Portability		
📝 Initial Training	Role : Scenario A 🔻	
🥖 Proficiency education		
🖌 Operator ratio	Priority: High	
🖌 Acceptable Usability	Objective: 0.0	
🖌 Assistive: Unattended sampling	objective.	
🖌 Assistive: Auto Notification	Lower Threshold:	
🖉 Assistive: Path Tracing		
🖉 Assistive: Auto Station Keeping	Upper Threshold: 8.0	
🖌 Assistive: Emergency stop		
🖉 Assistive: Mobility: Reacquire comms	Type: Human Factors 💌	
🖉 Assistive: Mobility: Self Extraction		
🖉 Assistive: Victim Indicators: Probability of D	S ¹ Desirability Curve Parameters: 1 d ² 0 ⁷ 1 S ¹ Desirability Curve: 1 d ² 0 ⁷ 1	
🖌 Context: Remote information sharing	Signed Desirability Curve Parameters: 1 d ² tr ² tr Signed Desirability Curve: 1 d ² tr Requirement: Operator ratio Signed Desirability Curve: 1 diff of tr	
🖉 Context: Operator disengagement	Scenario A Recon: Operator ratio	
🖉 Context: Co-located information sharing	How Measured: Number of operators	
Context: Lighting Conditons		
🖉 Context: Mobility	Role: Scenario A Recon Curve Type: Less	
Context: Protective Clothing	Upper Threshold: 20	
🖉 Display: Dashboard	Objective: 1.0 2 06	
Display: Mission data Integration	Collective: 10 and 10 Lower Threshold:	
Interaction: Component controls	Ramt where d = 1: 1.0	
Interaction: Adjustable noise filtering	Curve Style: Curvilnear Cuvilnear 02.	
👁 🚣 Logistics	S-Curve S-Curve Hyperbolic Hyperbolic	
🗢 🤷 Operating Environment	Asymptotic Asymptotic 10 12 14 1.6 1.8 2.0 2.2	
💽 🛃 System	Set Point (Reprit Value): 1.1017857	
	Humber of operators	


<u> Si</u> Requirement Tree: 1	r, ⊠_ ×
<u>V</u> iew <u>E</u> dit	
RJPF	
🙀 Customer Requirement	
🕈 🙀 System	
💽 🚰 Chassis 🛛 🗛	
💁 🛃 Comms 🛛 🗧	
⊶ 좌 Comms 5 ⊶ 🖧 Mobility 12	
👁 🏊 Payload 🛛 🕇	
👁 🖧 Power 🛛 5	
👁 🍒 Sensing 🛛 🕱 🧕	

Robot Categories and Deployment Methods (13 total)

	1	1	1	1	1	1	1	1	1		1		,
	Ground: Peek Robots	Ground: Collapsed Structure Stair/Floor climbing, map, spray, breach bots	Wide area		Confined Space, Temporary	Ground: Confined Space Shape Shifters	Ground: Confined Space Retrieval Bots	Aerial:High Altitude Loiter Bots		Aerial: Ledge Access Bot	Aquatic: Variable Depth Sub Bots	Aquatic: Bottom Crawler Bot	Aquatic: Swift Water Surface Swimmer
Employment	Provide rapid audio visual situational awareness; provide rapid HAZMAT detection; data logging for subsequent team work rosseu.	Stairway & upper floor situational awareness; mitigation activities; stay behind monitoring	area survey; site assessment; victim identification; mitigation activities; stay	when aerial platforms are unavailable or		Search; provide stay behind monitoring	Retrieve objects from confined spaces; provide stay behind monitoring	Provide overhead perspective & sit. awareness; provide HAZMAT plume detection; provide comm repeater coverage	delivery to rooftops; provide overhead perspective; provide comm repeater	Object retrieval from upper floors; crowd control with a loudspeaker object attached, provide situational awareness	Structural inpsection; leak localization/miti gation; object (body) recovery	rapid current	Upstream access and station keeping; payload delivery; object recovery
	chucked, thrown pneumatically, w/surgical tubing; marsupially	Backpacked; self driven; marsupially deployed	Backpacked; self driven; marsupially	Placed; thrown pneumatically, w/surgical tubing; marsupially deployed	Placed: lowered	Placed; lowered	Placed; lowered via tether	Released: baloon or F/W; tethered LTAF (kite)	Launched F/W; tethered LTAF (kite)	Launched VTOL; VTOL	Dropped into water; lowered via tether	Driven across w	Dropped into water; marsupially deployed
	Trade mobility, duration, sensing for increased expendability	form factor for increased mobility, sensing, manipulation; mapping variant; spraying variant; breaching variant	form factor for increased mobility, sensing, manipulation; mapping variant; spraying variant; breaching	vertical mobility	trade mobility and payload capacity for shoring capacity	trade payload capacity for confined space access	trade sensing capacity for manipulators, confined space access	trade penetration capacity for vertical perspective	penetration capacity & loiter time for vertical		mobility for sub surface access	pursue amphibious mobility at cost of other performance	pursue swift water capacity at cost of other performance

Composite Statistics

(Integrated Product and Process Development)

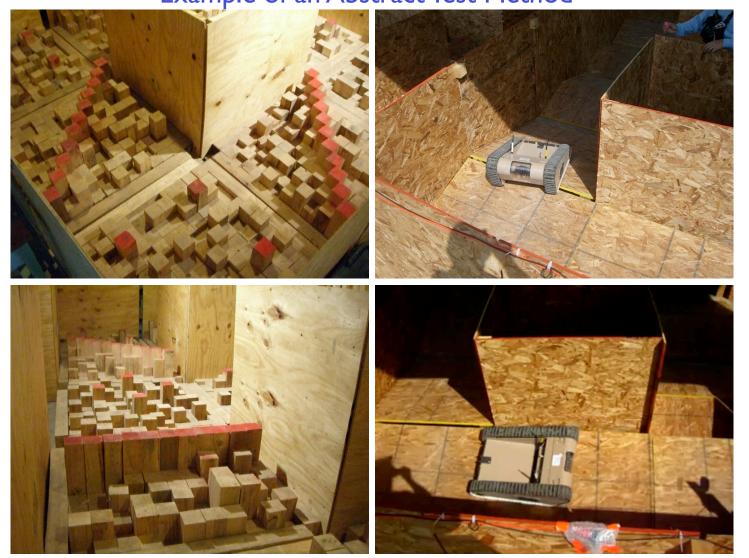
Cache Packaging, Weight, and Volume ASTM International Standard Test Method ASTM E2592-07

Apparatus: Qualified packing containers, scale, timerMethod: Weigh and count qualified shipping containers, time setup, note toolsMeasure: Shipping and down-range weight, time to setup

Visual Acuity, Field of View, Variable Illumination

Example Requirements

Number:	<mark>99</mark> *		
Туре:	SENSING		
Sub-Type:	REAL-TIME COLOR VIDEO		
Requirement:	SYSTEM ACUITY - FAR		
Metric:	METERS	Number:	<u>96</u>
Description:	This requirement captures the responders' ex	Туре:	SENSING
	g (hence the real-time emphasis), object identification	Sub-Type:	REAL-TIME COLOR VIDEO
	e the emphasis on long-range system acuity). The r		SYSTEM ACUITY - NEAR
	ystem, including possible communications signal d		MILLIMETERS
	pability. They also noted that the limiting case for l	Description:	This requirement captures the responders' expectation to use video for key tasks
assessment of structu	ural integrity of buildings. This requires identifying	such as maneuvering (h	hence the real-time emphasis), object identification (hence the color emphasis), and
inspecting the tops/b	pottoms of load bearing columns, and generally asse	detailed inspection (her	nce the emphasis on short-range system acuity). The responders noted the need to
ceilings, and floors.	The responders made no distinction regarding tethe		em, including possible communications signal degradation and display quality,
address this requiren		when testing this capab	ility. They also noted that this requirement is closely tied to the need for adjustable
Test Method:	SEE REAL-TIME VISION SYSTEM AC		vashing out the image of close objects. The responders made no distinction
		regarding tethered or w	vireless implementations to address this requirement.
		Test Method:	SEE REAL-TIME VISION SYSTEM ACUITY TEST


Number:	101]					
Type:	SENSING							
Sub-Type:	REAL-TIME COLOR VIDEO							
Requirement:	FIELD OF VIEW							
Metric:	DEGREES							
Description:	This requirement captures the responders' exp	This requirement captures the responders' expectation to use real-time video for						
a variety of tasks. Th	ne responders noted that this requirement is closely t	tied to requiremer	nts addressing					
independent pan/tilt o	capabilities.							
Test Method:	SEE REAL-TIME VISION SYSTEM AC	Number:	<mark>03</mark>					
<u>.</u>		Туре:	CHAS					
		C I T	TT T T T					

Number:	<mark>03</mark>
Туре:	CHASSIS
Sub-Type:	ILLUMINATION
Requirement:	ADJUSTABLE
Metric:	YES/NO
Description:	This requirement captures the responders' expectation to use video in confined
spaces and for short-	range object identification, which can wash out from excessive illumination of the
scene.	
Test Method:	SEE REAL-TIME VISION SYSTEM ACUITY TEST

Visual Acuity and Field of View ASTM International Standard Test Method ASTM E2566-08

Apparatus: Snellen "tumbling E" charts (near field and far field) and field of view lines **Method:** From 6m (20 ft) read smallest line in ambient (>1000 lux) and dark (< 1 lux) **Measure:** Smallest line read (correlated to hazmat labels and placards)

Apparatus: Random stepfield pallets (flat, hill, diagonal hill) or pitch/roll ramps in figure-8
Method: Negotiate a continuous path for one battery cycle
Measure: Number of laps, time (and if failures, note maintenance time and tools)

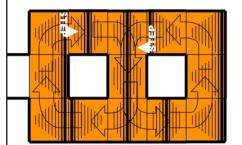
NIST National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Version: 2007.4

Developing

Standard Test Methods For Response Robots

MOBILITY/ENDURANCE

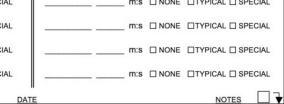

ROBOT:		RADIO		
OPERATOR:	ORG:	_ ORG:		
TRAINING TIME:	□ 0-24 HRS	□ 24-100 HRS		> 100 HRS

INSTRUCTIONS: TRAVERSE THE FIGURE-8 WITHOUT BUMPING THE WALLS FOR ONE COMPLETE BATTERY CYCLE. REPAIRS ARE ALLOWED BUT MUST BE DONE IN PLACE TO CONTINUE TEST.

ADMINISTRATOR: 1) COUNT THE NUMBER OF LAPS (16 PALLETS PER LAP). 2) NOTE THE ELAPSED TIME. THE CLOCK SHOULD STOP FOR SWITCHING OF OPERATORS AND REPAIRS. 3) NOTE THE NUMBER OF REPAIRS, TYPE OF REPAIRS, AND TOOLS USED.

PITCH/ROLL RAMPS

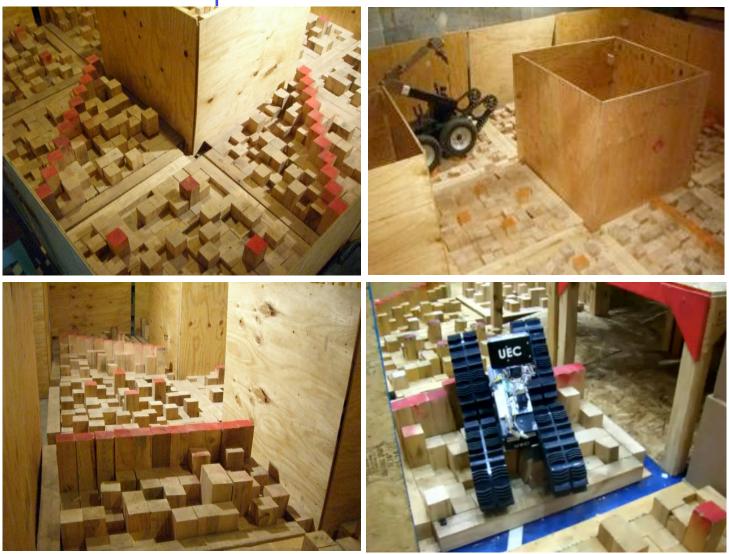
START TIME:	
END TIME:	
ELAPSED TIME:	m:s
TOTAL PALLETS:	19 <u>19 (1917) (1917)</u> (1917)



 REPAIRS
 TIME
 TOOLS

 TYPE
 TIME
 TOOLS

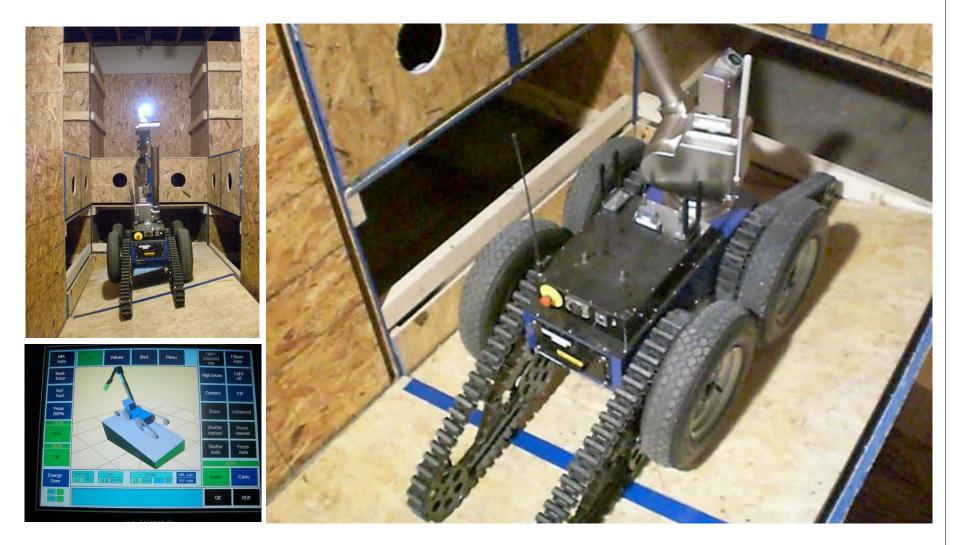
 Image: Straight of the strai



FULL CUBIC (RED) STEPFIELDS

Apparatus: Random stepfield pallets (flat, hill, diagonal hill) or pitch/roll ramps in figure-8
Method: Negotiate a continuous path for one battery cycle
Measure: Number of laps, time (and if failures, note maintenance time and tools)

Apparatus: Random stepfield pallets (flat, hill, diagonal hill) or pitch/roll ramps in figure-8
Method: Negotiate a continuous path for one battery cycle
Measure: Number of laps, time (and if failures, note maintenance time and tools)



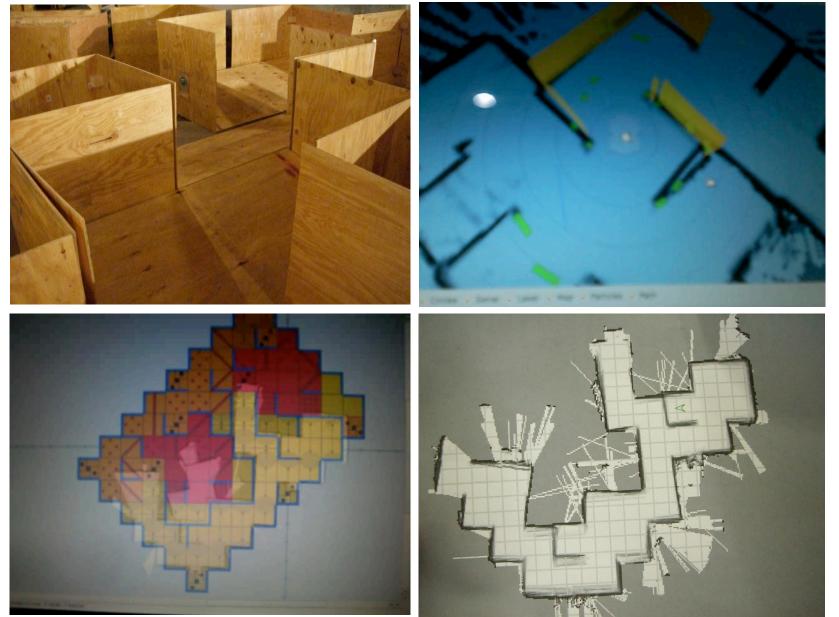
Mobile Manipulation: Directed Perception Example of an Abstract Test Method

Apparatus: Shelves with face/top holes (up to 4 levels) and terrains: flat, roll, stepfields
 Method: Identify targets inside holes (visual, CBRNE) with three constraints: open, over, under
 Measure: Number targets identified at each level with each constraint, time

Mobile Manipulation: Directed Perception Example of an Abstract Test Method

Apparatus: Shelves with face/top holes (up to 4 levels) and terrains: flat, roll, stepfields
 Method: Identify targets inside holes (visual, CBRNE) with three constraints: open, over, under
 Measure: Number targets identified at each level with each constraint, time

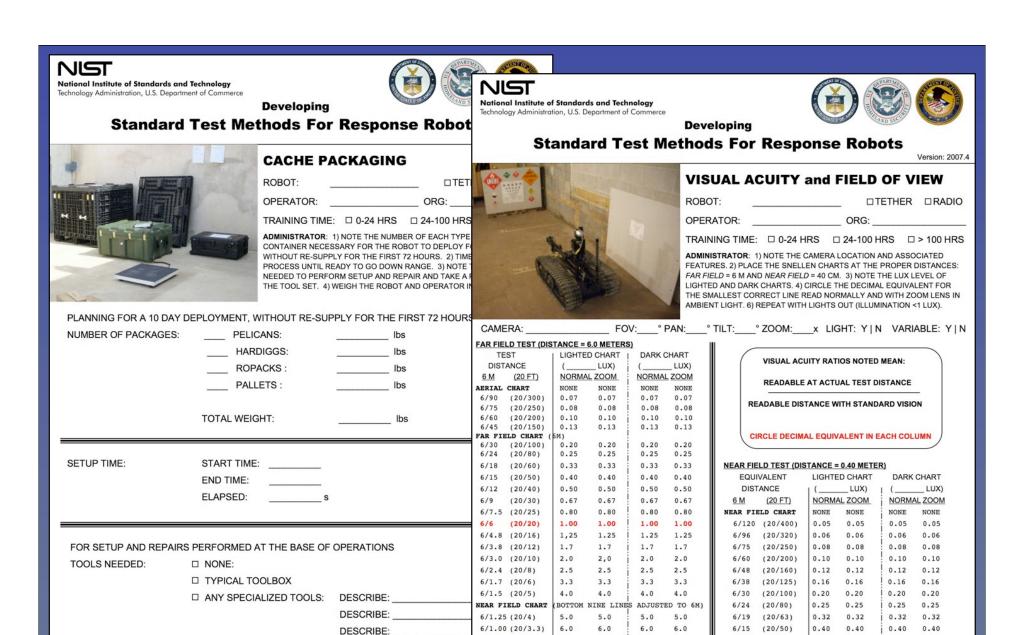
Mobile Manipulation: Grasping Dexterity Example of an Abstract Test Method



Apparatus: Shelves with top holes (up to 4 levels) and terrains: flat, roll, stepfields
 Method: Place blocks into holes with three constraints: open, over, under
 Measure: Number of blocks placed at each level with each constraint, time

Mobile Manipulation: Directed Perception Example of an Abstract Test Method




Remote Situational Awareness: Random Mazes Example of an Abstract Test Method

Remote Situational Awareness: Random Mazes Example of an Abstract Test Method

ROBOT: Ibs DOWN-RANGE WEIGHT: OPERATOR INTERFACE: 6/0.3 (20/1.1) 20 20 i 20 20 6/4.8 (20/16) 1.25 1.25 1.25 1.25 6/3.8 (20/12) 6/0.25 (20/.08) 24 24 1.60 24 24 1.60 1.60 1.60 6/0.20 (20/.07) 30 30 30 30 6/3.0 (20/10) 2.00 2.00 2.00 2.00 DATE TEST LEADER DATE NOTES

7.5

10

12

15

7.5

10

12

15

7.5

10

12

15

7.5

10

12

15

6/12

(20/40)

6/9.5 (20/32)

6/7.5 (20/25)

6/6.0 (20/20)

0.50

0.63

0.80

1.00

0.50

0.63

0.80

1.00

0.50

0.63

0.80

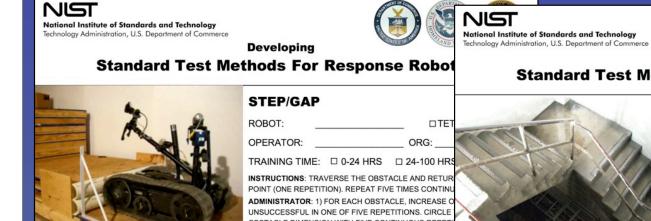
1.00

0.50

0.63

0.80

1.00


6/0.8 (20/2.7)

6/0.6 (20/2.0)

6/0.5 (20/1.7)

6/0.40 (20/1.3)

TEST LEADER

OBSTACLE DIMENSION WITH FIVE CONTINUOUS REPET THE ELAPSED TIME FOR FIVE CONTINUOUS TRAVERSES

STEP WITH EDGE

HEIGHT	1	2	3	4	5	ELAPSED TIME
□ 100 cm						m:s
□ 90 cm						m:s
□ 80 cm						m:s
□ 70 cm						m:s
🗆 60 cm						m:s
□ 50 cm						m:s
□ 40 cm						m:s
□ 30 cm						m:s
□ 20 cm						m:s
🗆 10 cm						m:s
			_	_		

STEP WITH PIPE

HEIGHT	1	2	3	4	5	ELAPSED TIME	
🗆 100 cm						m:s	
🗆 90 cm						m:s	
🗆 80 cm						m:s	
🗆 70 cm						m:s	
🗆 60 cm						m:s	
□ 50 cm						m:s	
□ 40 cm						m:s	
□ 30 cm						m:s	
□ 20 cm						m:s	
🗆 10 cm						m:s	
TEST LEADER						DATE	

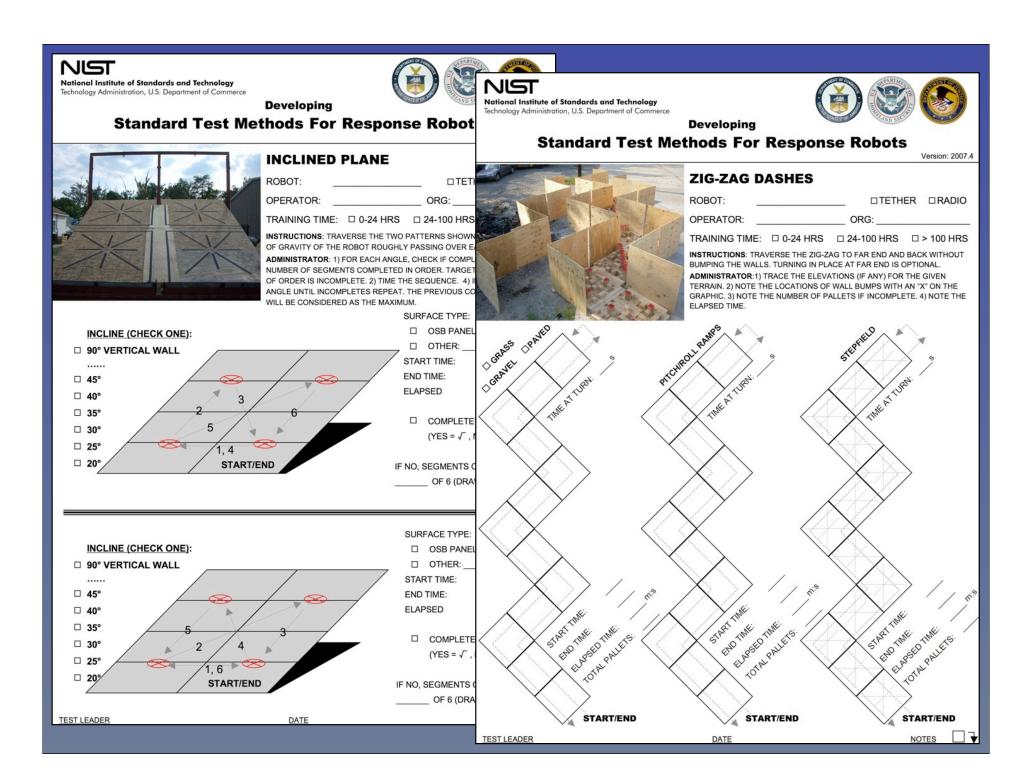
GAP WITH NO STEP HEIGHT 1 2 3 4 5 □ 100 cm □ □ □ □ □ □ 90 cm 0 0 0 0 0 □ 80 cm □ □ □ □ □ □ □ 70 cm □ 60 cm □ 50 cm □ 40 cm □ 30 cm STEPS □ 20 cm □ □ □ □ □ □ □ 10 cm □ □ □ □ □ GAP WITH 20CM STE HEIGHT 1 2 3 4 5 □ 100 cm □ □ □ □ □ □ □ 90 cm □ □ □ □ □ □ 80 cm □ □ □ □ □ □ □ 70 cm □ 60 cm □ 50 cm □ 40 cm STEPS □ 30 cm □ 20 cm

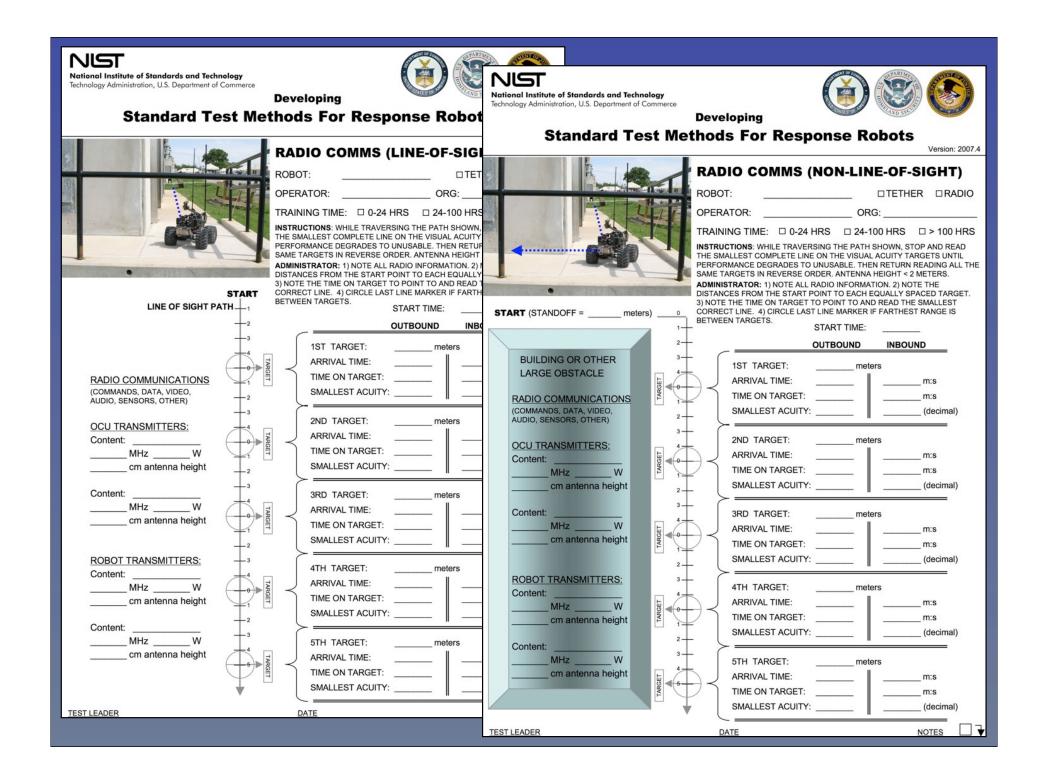
□ 10 cm □ □ □ □ □ □

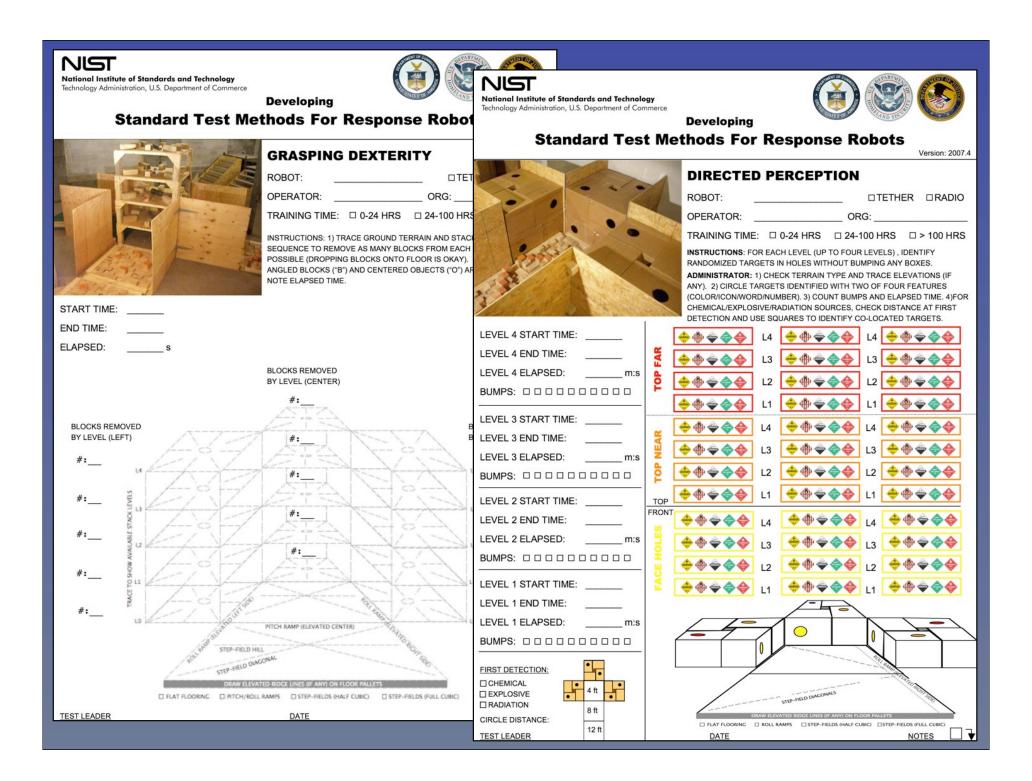
TEST LEADER

STEPS

Standard Test Methods For Response Robots STAIRS ROBOT:


	OPERATOR: ORG:
STAN STA	TRAINING TIME: □ 0-24 HRS □ 24-100 HRS □ > 100 HRS
	INSTRUCTIONS: ASCEND THE STAIRS TO THE TOP, TURN AND DESCEND BACK TO THE START POINT. ADMINISTRATOR: 1) NOTE THE AVERAGE STEP RISER AND TREAD DIMENSIONS. 2) NOTE THE WALL CONDITIONS AS SOLID OR OPEN. 3)NOTE THE NUMBER OF STAIRS AND LANDINGS (SHOWN IN GREY). 4)TIME THE SEQUENCE.
STEPS :	ASCENDING DESCENDING
	START TIME:
STEPS :	END TIME:
	ELAPSED TIME:ss
	TOTAL STEPS: (COUNT LANDINGS AS A STAIR)
STEPS :	AVG RATE: (COUNT LANDINGS AS A STAIR)
STEPS :	
STEPS :	
	LEFT WALL (ASCENDING):
	RIGHT WALL (ASCENDING):
	STAIR HEIGHT: cm
	TREAD DEPTH: cm
STEPS :	

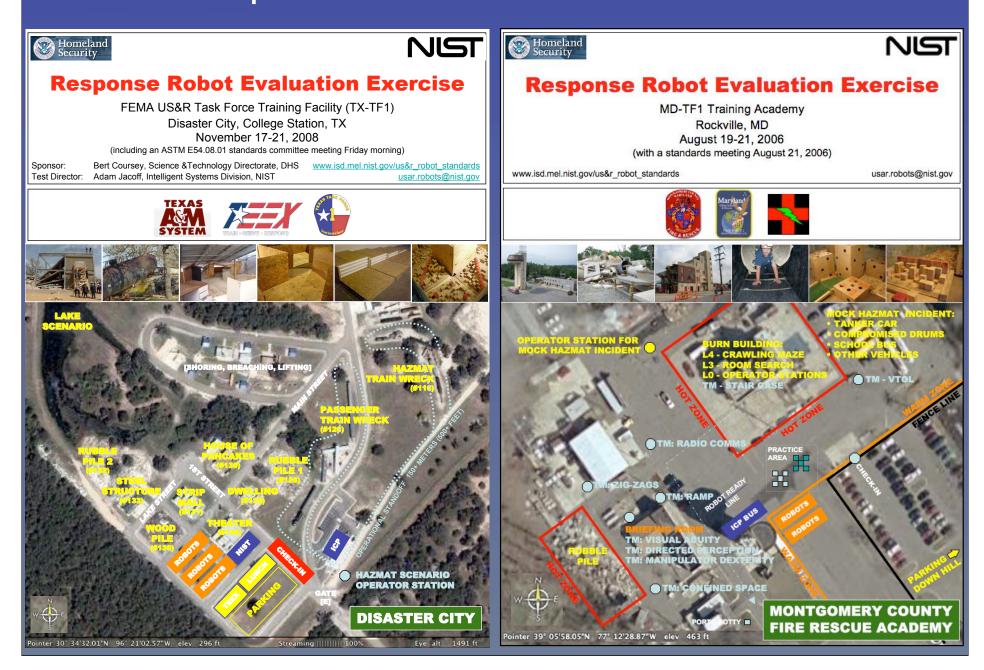

Developing



Version: 2007.4

DTETHER DRADIO

Response Robot Evaluation Exercises



FEMA US&R Task Force Representatives and NIST Personnel

Response Robot Evaluation Exercises

Emerging Standard Test Methods for Response Robots

Logistics: Cache Packaging, Setup, Tools Sensors: Video: Acuity Sensors: Video: Field of View Sensors: Video: Spatial Awareness Sensors: Audio: Two Way Comms Sensors: Sonar: Resolution Radio Comms: Line of Sight Radio Comms: Non Line of Sight Radio Comms: Structure Penetration Human Factors: Check List Items Human Factors: Random Maze Search Energy: Endurance Mobility: Inclined Plane Mobility: Pipe Step Mobility: Gap Crossing Mobility: Stairs Mobility: Stepfield Terrain Mobility: Confined Space Mobility: Towing Manipulation: Directed Perception Manipulation: Grasping Dexterity Aquatic: Station Keeping in Current Aerial (<2kg): Airworthiness Aerial (<2kg): Fixed Wing Orbits Aerial (<2kg): VTOL Station Keeping

