

RYERSON POLYTECHNIC UNIVERSITY

DEPARTMENT OF MATH, PHYSICS, AND COMPUTER SCIENCE

CPS 710

FINAL EXAM

FALL 96

 STUDENT ID:

INSTRUCTIONS

 Please write your student ID on this page. Do not write it or your name on any other pages.

 Please answer directly on this exam.

 This exam has 4 questions, and is worth 30% of the course mark.

 NO AIDS ARE ALLOWED.

 A - General Concepts 40

 B - Shift-Reduce parsing 15

 C - Evaluation 20

 D - Grammars 25

This exam has 7 pages including the front page

This exam has 7 pages including the front page

CPS 710 FINAL EXAM F96 - 3

Part A - General Concepts - 40 marks

A1 (4 marks)

What is a scanner?

A3 (5 marks)

Why would you design a compiler to generate intermediate code instead of directly
generating machine code?

A3 (5 marks)

Draw a syntax tree for the expression p and q or not r

A4 (6 marks)

Given the grammar
BOOLEAN → AND-EXPR {or AND_EXPR}0

AND_EXPR → NOT_EXPR {and NOT_EXPR}0

NOT_EXPR → {not}0 EXPR
EXPR → p | q | r
Give the rightmost derivation of the expression p and q or not r

CPS 710 FINAL EXAM F96 - 4

A5 (6 marks)

Explain the difference between syntax and semantic errors. Give 2 examples of each
type of error.

A6 (6 marks)

Why is is better to organise the name table of a symbol table as self-organising list (i.e.
list of identifiers where last used identifier is moved to the front) rather than as a simple
list?

A7 (10 marks)

Explain 2 different ways of organising parsing and symbol table activities in order to
implement lexical scoping in an interpretor.

CPS 710 FINAL EXAM F96 - 5

Part B - Shift-Reduce Parsing (15 marks)

Given the LR(1) grammar with the following productions augmented with states (shown
subscripted and outlined):

(1) IF → if e STATEMENTS else STATEMENTS

(2) IF → if e STATEMENTS

(3) STATEMENTS → STATEMENTS STATEMENT

(4) STATEMENTS → STATEMENT

(5) STATEMENT → s

Fill in the LR table for this grammar:

 IF STATEMENTS STATEMENT if e else s $

There are 4 possible entries for each slot in the table:
• S state: shift token onto symbol stack and change state

• R production: reduce the production by popping n symbols off the symbol stack
and n symbols off the state stack, and inserting the left-hand side
of the production into the input stream

• HALT: to halt process
• nothing: to indicate a syntax error

CPS 710 FINAL EXAM F96 - 6

Part C - Evaluation - 20 marks - This has a short answer

In this question you will be evaluating CASE statements in a new programming
language.
• The section of the grammar which deals with CASE statements is:

CASE -> case EXPRESSION COMPARISONS OTHERWISE ;
COMPARISONS -> {COMPARISON COMPARISONS}0

COMPARISON -> EXPRESSION : EXPRESSION
OTHERWISE -> otherwise : EXPRESSION

The non-terminals COMPARISON and COMPARISONS do not appear in any

other part of the grammar.
• A syntax tree node produced by the parser has the structure:

typedef struct node {
 int type;
 struct node *v1, *v2, *v3;
 } node;

• a CASE structure is organised as follows:
- type = CASE
- v1 points to an expression which will be compared against others
- v2 points to a COMPARISON, or an expression corresponding to the otherwise

clause of the case statement.
• a COMPARISON structure is organised as follows

- type = COMPARISON
- v1 points to an expression that will be compared to the value of v1 in the CASE

structure.
- v2 points to an expression that will be the value of the case structure if the

CASE v1 is equal to the COMPARISON v1.
- v3 points to the next COMPARISON structure, or an expression corresponding

to the otherwise clause of the CASE statement.
• The CASE structure evaluates to the value of the first v2 in the list of

comparisons for which the associated v1 is equal to the v1 in the CASE structure.
If there is no such value, it evaluates to the value of the otherwise clause.

• You are writing int eval(node *tree), a function which evaluates a syntax tree.
Eval returns an int which is the value of the syntax tree (you can assume that
syntax trees all evaluate to integers). Eval is completely written except for the
part which handles CASE and COMPARISON structures.

• Write C code for the section of eval which handles CASE structures, and
whatever C code is necessary to handle COMPARISON structures.

• You do not need to do any memory management in your code. You can assume
that the CASE expression you are evaluating is error-free.

CPS 710 FINAL EXAM F96 - 7

Part D - Grammars - 25 marks

In this question, non-terminals are in UPPER-CASE and terminals are underlined.

D1 (6 marks)

What is a left-recursive grammar? Why would you not want a grammar to be left-
recursive?

D2 (6 marks)

Remove the left recursion from the following set of productions. You may need to
introduce new non-terminals.

S → S ∩ S

S → S ∪ S

S → - S

S → ∅ | { 1 } | { 2 }

CPS 710 FINAL EXAM F96 - 8

D3 (6 marks)

Left-factor the following set of productions fully. You may need to introduce new non-
terminals.

S → IF | o

IF → IF1 | IF2

IF1 → if c then S

IF2 → if c then S else S

D4 (7 marks)

Why is the following set of productions ambiguous?

WHILE → while e do STATS od

STATS → STAT STATS0

STAT → WHILE | ASSIGNMENT | EXPR

ASSIGNMENT → a := EXPR

EXPR → TERM {(+ | −) EXPR}0

TERM → (+ | −) 0 a

	Part A - General Concepts - 40 marks
	A1 (4 marks)
	What is a scanner?

	A3 (5 marks)
	Why would you design a compiler to generate intermediate cod

	A3 (5 marks)
	Draw a syntax tree for the expression p and q or not r

	A4 (6 marks)
	Given the grammar
	Give the rightmost derivation of the expression p and q or n

	A5 (6 marks)
	Explain the difference between syntax and semantic errors.

	A6 (6 marks)
	Why is is better to organise the name table of a symbol tabl

	A7 (10 marks)
	Explain 2 different ways of organising parsing and symbol ta

	Part B - Shift-Reduce Parsing (15 marks)
	Given the LR(1) grammar with the following productions augme
	(1) IF  1 if 2 e 3 STATEMENTS 6 else 7 STATEMENTS 9
	(2) IF  1 if 2 e 3 STATEMENTS 6
	(3) STATEMENTS  3,7 STATEMENTS 6 STATEMENT 8
	(4) STATEMENTS  3,7 STATEMENT 5
	(5) STATEMENT  3,6,7 s 4

	Fill in the LR table for this grammar:
	IF
	STATEMENTS
	STATEMENT
	if
	e
	else
	s
	$
	1
	2
	3
	4
	5
	6
	7
	8
	9
	There are 4 possible entries for each slot in the table:
	• S state: shift token onto symbol stack and change state
	• R production: reduce the production by popping n symbols o
	• HALT: to halt process
	• nothing: to indicate a syntax error

	Part C - Evaluation - 20 marks - This has a short answer
	In this question you will be evaluating CASE statements in a
	• The section of the grammar which deals with CASE statement
	CASE -> case EXPRESSION COMPARISONS OTHERWISE ;
	COMPARISONS -> {COMPARISON COMPARISONS}0
	COMPARISON -> EXPRESSION : EXPRESSION
	OTHERWISE -> otherwise : EXPRESSION
	The non-terminals COMPARISON and COMPARISONS do not appear i

	• A syntax tree node produced by the parser has the structur
	typedef struct node {
	int type;
	struct node *v1, *v2, *v3;
	} node;

	• a CASE structure is organised as follows:
	- type = CASE
	- v1 points to an expression which will be compared against
	- v2 points to a COMPARISON, or an expression corresponding

	• a COMPARISON structure is organised as follows
	- type = COMPARISON
	- v1 points to an expression that will be compared to the va
	- v2 points to an expression that will be the value of the c
	- v3 points to the next COMPARISON structure, or an expressi

	• The CASE structure evaluates to the value of the first v2
	• You are writing int eval(node *tree), a function which eva
	• Write C code for the section of eval which handles CASE st
	• You do not need to do any memory management in your code.

	Part D - Grammars - 25 marks
	In this question, non-terminals are in UPPER-CASE and termin
	D1 (6 marks)
	What is a left-recursive grammar? Why would you not want a

	D2 (6 marks)
	Remove the left recursion from the following set of producti
	S ? S (S
	S ? S (S
	S  - S
	S ?? (| { 1 } | { 2 }

	D3 (6 marks)
	Left-factor the following set of productions fully. You may
	S  IF | o
	IF  IF1 | IF2
	IF1  if c then S
	IF2  if c then S else S

	D4 (7 marks)
	Why is the following set of productions ambiguous?
	WHILE  while e do STATS od
	STATS  STAT STATS0
	STAT  WHILE | ASSIGNMENT | EXPR
	ASSIGNMENT  a := EXPR
	EXPR  TERM {( | ) EXPR}0
	TERM  ( | ) 0 a

