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Abstra
t. We present a hybrid dis
rete-
ontinuous extension of Reiter's

temporal situation 
al
ulus, dire
tly inspired by hybrid systems in 
on-

trol theory. While keeping to the foundations of Reiter's approa
h, we

extend it by adding a time argument to all 
uents that represent 
on-

tinuous 
hange. Thereby, we ensure that 
hange 
an happen not only

be
ause of a
tions, but also due to the passage of time. We present a

systemati
 methodology to derive, from simple premises, a new group

of axioms whi
h spe
ify how 
ontinuous 
uents 
hange over time within

a situation. We study regression for our new hybrid a
tion theories and

demonstrate what reasoning problems 
an be solved. Finally, we show

that our hybrid theories indeed 
apture hybrid automata.

Keywords: Situation 
al
ulus � Temporal reasoning � Hybrid systems.

1 Introdu
tion

Adding time and 
ontinuous 
hange to situation 
al
ulus (SC) a
tion theories

has attra
ted a lot of interest over the years. A seminal book [16℄, re�ning the

ideas of [13℄, extends situation 
al
ulus with 
ontinuous time. For ea
h 
ontin-

uous pro
ess, there is an a
tion that initiates the pro
ess at a moment of time,

and there is an a
tion that terminates it. A basi
 tenet of Reiter's temporal SC

is that all 
hanges in the world, in
luding 
ontinuous pro
esses su
h as a vehi
le

driving in a 
ity or water 
owing down a pipe, are the result of named dis
rete

a
tions. Consequently, in his temporal extension of SC, 
uents remain atempo-

ral, while ea
h instantaneous a
tion a
quires a time argument. As a side e�e
t of

this ontologi
al 
ommitment, 
ontinuously varying quantities do not attain val-

ues until the o

urren
e of a time-stamped a
tion. For example, in Newtonian

physi
s, suppose a player ki
ks a football, sending it on a ballisti
 traje
tory.

The question might be: given the ve
tor of initial velo
ity, when will the ball

be within 10% of the peak of its traje
tory? In order to answer su
h questions

either a natural, or an exogenous a
tion, depending on the query, has to o

ur

to deem the moment of interest for the query. Thus, before one 
an answer su
h

questions, one needs the ability to formulate queries about the height of the ball

?
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at arbitrary time-points, whi
h is not dire
tly possible without an expli
it a
tion

with a time argument, if the query is formed over atemporal 
uents.

In Reiter's temporal SC, to query about the values of physi
al quantities in

between the a
tions (agent's or natural), one 
ould opt for an auxiliary exogenous

a
tion wat
h(t) [18℄, whose purpose is to �x a time-point t to a situation when

it o

urs, and then pose an atemporal query in the situation whi
h results from

exe
uting wat
h(t). Similarly, one 
an introdu
e an exogenous a
tion waitFor(�)

that is exe
uted at a moment of time when the 
ondition � be
omes true, where

� is 
omposed of fun
tional 
uents that are interpreted as 
ontinuous fun
tions

of time. This approa
h has proved to be quite su

essful in 
ognitive roboti
s

[8℄ and was used to provide a SC semanti
s for 
ontinuous time variants of the

popular planning language PDDL [3℄.

In this paper we study a new variant of temporal SC in whi
h we 
an dire
tly

query 
ontinuously 
hanging quantities at arbitrary points in time without intro-

du
ing any a
tions (natural or exogenous or auxiliary) that supply the moment

of time. Our approa
h is query-independent. For doing so we take inspiration

from the work on hybrid systems in 
ontrol theory [4, 12℄, whi
h are based on

dis
rete transitions between states that 
ontinuously evolve over time. Following

this idea, the 
rux of our proposal is to add a new kind of axioms 
alled state evo-

lution axioms (SEA) to Reiter's su

essor state axioms (SSA). The SSA spe
ify,

as usual, how 
uents 
hange when a
tions are exe
uted. Informally, they 
har-

a
terize transitions between di�erent states due to a
tions. The state evolution

axioms spe
ify how the 
ow of time 
an bring 
hanges in system parameters

within a given situation while no a
tions are exe
uted. Thus, we maintain the

fundamental assumption of SC that all dis
rete 
hange is due to a
tions, though

situations now in
lude a temporal evolution.

Reiter [16℄ shows how the SSA 
an be derived from the e�e
t axioms in

normal form by making the 
ausal 
ompleteness assumption. We do similar

work w.r.t. state evolution axioms, thus providing a pre
ise methodology for

axiomatization of 
ontinuous pro
esses in SC in the spirit of hybrid systems.

One of the key results of SC is the ability to redu
e reasoning about a future

situation to reasoning about the initial state by means of regression [16℄. We

show that a suitable notion of regression 
an be de�ned despite the 
ontinuous

evolution within situations.

In hybrid automata, while 
ontinuous 
hange is dealt with thoroughly, the

dis
rete des
ription is limited to �nite state ma
hines, i.e., it is based on a

propositional representation of the state. SC, instead, is based on a relational

representation. There are pra
ti
al examples that 
all for an extension of hybrid

systems where states have an internal relational stru
ture and the 
ontinuous


ow of time determines the evolution within the state [20℄. Our proposal 
an

readily 
apture these 
ases, by providing a relational extension to hybrid au-

tomata, whi
h bene�ts from the representational ri
hness of SC. Thus, our work


an help to bring together KR and Hybrid Control, getting from the former the

semanti
 ri
hness of relational states and from the latter a 
onvenient treatment

of 
ontinuous time. The proofs of our thereoms are available in [1℄.
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2 Ba
kground

Situation Cal
ulus The situation 
al
ulus has three basi
 sorts (situation, a
-

tion, obje
t); formulas 
an be 
onstru
ted over terms of these sorts. Reiter [16℄

shows that to solve many reasoning problems about a
tions, it is 
onvenient to

work with SC basi
 a
tion theories (BATs) that have the following ingredients.

For ea
h a
tion fun
tion A(�x), an a
tion pre
ondition axiom (APA) has the syn-

ta
ti
 form Poss(A(�x); s)$ �

A

(�x; s), meaning that the a
tion A(�x) is possible

in situation s if and only if �

A

(�x; s) holds in s, where �

A

(�x; s) is a formula

with free variables among �x = (x

1

; : : : ; x

n

) and s. A situation is a �rst-order

(FO) term des
ribing a unique sequen
e of a
tions. The 
onstant S

0

denotes the

initial situation, the fun
tion do(�; �) denotes the situation that results from

performing a
tion � in situation �, and do([�

1

; : : : ; �

n

℄; S

0

) denotes the situa-

tion obtained by 
onse
utively performing �

1

; : : : ; �

n

in S

0

. The notation �

0

v �

means that either situation �

0

is a subsequen
e of � or �=�

0

. The abbreviation

exe
utable(�) 
aptures situations � all of whose a
tions are 
onse
utively possi-

ble. Obje
ts are FO terms other than a
tions and situations that depend on the

domain of appli
ation. Above, �

A

(�x; s) is a formula uniform in situation argu-

ment s: it talks only about situation s and uses only domain-spe
i�
 predi
ates

(see [16℄). For ea
h relational 
uent F (�x; s) and ea
h fun
tional 
uent f(�x; s),

respe
tively, a su

essor state axiom (SSA) has the form

F (�x; do(a; s))$ �

F

(�x; a; s) or f(�x; do(a; s))=y $ �

f

(�x; y; a; s);

where �

F

(�x; a; s) and �

f

(�x; y; a; s) are formulas uniform in s. A BAT D also


ontains the initial theory : a �nite set D

S

0

of FO formulas uniform in S

0

. Finally,

BATs in
lude a set D

una

of unique name axioms for a
tions (UNA). If a BAT

has fun
tional 
uents, it is required to satisfy an expli
it 
onsisten
y property

whereby ea
h fun
tional 
uent is always interpreted as a fun
tion.

BATs enjoy the relative satis�ability property: a BAT D is satis�able when-

ever D

una

[D

S

0

is. This property allows one to disregard the problemati
 parts

of a BAT, like the se
ond order (SO) foundational axioms � for situations, when


he
king satis�ability. BATs bene�t from regression, a reasoning me
hanism for

answering queries about the future (thereby solving the proje
tion problem).

The regression operator R is de�ned for suÆ
iently spe
i�
 (regressable) queries

about the future. R['℄ is obtained from a formula ' by a synta
ti
 manipula-

tion (see Defn. 4.7.4 in [16℄). By a seminal result in [16℄, regression redu
es SO

entailment from a BAT D to FO entailment by 
ompiling dynami
 aspe
ts of

the theory into the query.

To a

ommodate time, Reiter adds a temporal argument to all a
tions and

introdu
es two spe
ial fun
tions: time(a) refers to the time of o

urren
e of the

a
tion a, and start(s) refers to the starting time of situation s, i.e., the time

of the latest a
tion of s. The points 
onstituting the timeline with dense linear

order are assumed to have the standard interpretation (along with +, <, et


[16℄). To model exogenous events, Reiter develops a theory of natural a
tions

| non-agent a
tions that o

ur spontaneously as soon as their pre
ondition is
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satis�ed. Su
h a
tions are marked using the symbol natural, and their semanti
s

are en
oded by a modi�
ation of exe
utable(s). We use natural a
tions to indu
e

relational 
hange based on the values of the 
ontinuous quantities.

Hybrid Systems Hybrid automata are mathemati
al models used ubiquitously

in 
ontrol theory for analyzing dynami
 systems whi
h exhibit both dis
rete and


ontinuous dynami
s. [4℄ de�ne a basi
 hybrid automaton (HA) as a system H


onsisting of: a �nite set Q of dis
rete states ; a transition relation E � Q�Q; a


ontinuous state spa
e X � R

n

; for ea
h q 2 Q, a 
ow fun
tion '

q

: X�R 7! X

and a set Inv

q

� X 
alled the domain of permitted evolution; for ea
h (q; q

0

) 2 E,

a reset relation R

q;q

0

� X�P(X); a set Init � [

q2Q

(fqg�Inv

q

) of initial states.

Like a dis
rete automaton, a HA has dis
rete states and a state transition

graph, but within ea
h dis
rete state its 
ontinuous state evolves a

ording to

a parti
ular 
ow, e.g., it 
an be an impli
it solution to a system of di�erential

equations. The domain of permitted evolution delineates the boundaries whi
h

the 
ontinuous state X of the automaton 
annot 
ross while in state q, i.e.,

'

q

(X; t) 2 Inv

q

. The reset relation helps to model dis
rete jumps in the value of

the 
ontinuous state whi
h a

ompany dis
rete state swit
hing. A traje
tory of a

hybrid automaton H is a sequen
e � = h�

i

; q

i

; �

i

i

i2I

, with I = f1; 2; : : :g, where

�

i

is the duration, q

i

is a state from Q, and �

i

: [0; �

i

℄ 7! X is a 
ontinuous 
urve

along the 
ow '

q

i

(refer to [4℄ for details). A traje
tory 
aptures an instan
e of

a legal evolution of a hybrid automaton over time. Duration �

i

is the time spent

by the automaton in the i-th dis
rete state it rea
hes while legally traversing the

transition graph, obeying the reset relation. A traje
tory is �nite if it 
ontains

a �nite number jI j of steps and the sum �

i2I

�

i

is �nite.

3 Hybrid Temporal Situation Cal
ulus

In our quest for a hybrid temporal SC, we reuse the temporal ma
hinery

introdu
ed into BATs by Reiter, namely: all a
tions have a temporal argument

and the fun
tions time and start are axiomatized as before. We preserve atem-

poral 
uents, but no longer use them to model 
ontinuously varying physi
al

quantities. Rather, atemporal 
uents serve to spe
ify the 
ontext in whi
h 
on-

tinuous pro
esses operate. For example, the 
uent Falling(b; s) holds if a ball b

is in the pro
ess of falling in situation s, indi
ating that, for the duration of s,

the position of the ball should be 
hanging as a fun
tion of time a

ording to the

equations of free fall. The 
uent Falling(b; s) may be dire
tly a�e
ted by instan-

taneous a
tions drop(b; t) (ball begins to fall at the moment t) and 
at
h(b; t)

(ball stops at t), but the e�e
t of these a
tions on the position of the ball 
omes

about only indire
tly, by 
hanging the 
ontext of a 
ontinuous traje
tory and

thus swit
hing the 
ontinuous traje
tory that the ball 
an follow. Thus, a falling

ball is one 
ontext, and a ball at rest is another. In general, there are �nitely

many parametrized 
ontext types whi
h are pairwise mutually ex
lusive when

their parameters are appropriately �xed, and ea
h 
ontext type is 
hara
terized

by its own 
ontinuous fun
tion that determines how a physi
al quantity 
hanges.
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To model 
ontinuously varying physi
al quantities, we introdu
e new fun
-

tional 
uents with a temporal argument. We imagine that these 
uents 
an


hange with time, and not only as a dire
t e�e
t of a
tions. For example, for the


ontext where the ball is falling, the velo
ity of the ball at time t represented

by 
uent vel(b; t; s) 
an be spe
i�ed as [Falling(b; s)^ y = vel(b; start(s); s)�g�

(t�start(s))℄ ! vel(b; t; s)= y. Noti
e that this e�e
t axiom does not mention

a
tions and des
ribes the evolution of vel within a single situation.

Deriving State Evolution Axioms Our starting point is a temporal 
hange axiom

(TCA) whi
h des
ribes a single law governing the evolution of a parti
ular tem-

poral 
uent due to the passage of time in a parti
ular 
ontext of an arbitrary

situation. An example of a TCA was given above for vel(b; t; s). We assume that

a TCA for a temporal fun
tional 
uent f has the general synta
ti
 form


(�x; s) ^ Æ(�x; y; t; s)! f(�x; t; s)=y; (1)

where t, s, �x, y are variables and 
(�x; s), Æ(�x; y; t; s) are formulas uniform in s

whose free variables are among those expli
itly shown.We 
all 
(�x; s) the 
ontext,

as it spe
i�es the 
ondition under whi
h the formula Æ(�x; y; t; s) is to be used to


ompute the value of 
uent f at time t. Note that 
ontexts are time-independent.

The formula Æ(�x; y; t; s) en
odes a fun
tion (e.g., a solution to the initial value

problem for a system of the ordinary di�erential equations [19℄) whi
h spe
i�es

y in terms of the values of other 
uents at s, t. For ea
h TCA (1) to be well-

de�ned, we require that the ba
kground theory entails 
(�x; s) ! 9y Æ(�x; y; t; s).

In other words, whatever the 
ir
umstan
e, the TCA must supply a value for the

quantity modelled by f if its 
ontext is satis�ed. A set of k well-de�ned temporal


hange axioms for some 
uent f 
an be equivalently expressed as an axiom of

the form (2) below, where �(�x; y; t; s) is

W

1�i�k

(


i

(�x; s)^ Æ

i

(�x; y; t; s)). For ea
h

su
h axiom, we require that the ba
kground theory entails the 
ondition (3).

�(�x; y; t; s)! f(�x; t; s)=y; (2)

�(�x; y; t; s) ^ �(�x; y

0

; t; s)! y=y

0

: (3)

Condition (3) guarantees the 
onsisten
y of the axiom (2) by preventing a 
ontin-

uous quantity from having more than one value at any moment of time. Provided

(3), we 
an assume w.l.o.g. that all 
ontexts in the given set of TCA are pairwise

mutually ex
lusive w.r.t. the ba
kground theory D.

Having 
ombined all laws whi
h govern the evolution of f with time into

a single axiom (2), we 
an make a 
ausal 
ompleteness assumption: there are

no other 
onditions under whi
h the value of f 
an 
hange in s from its initial

value at start(s) as a fun
tion of t. We 
apture this assumption formally by the

explanation 
losure axiom

f(�x; t; s) 6= f(�x; start(s); s)! 9y �(�x; y; t; s):
(4)

Theorem 1. Let 	(�x; s) denote

W

1�i�k




i

(�x; s). The 
onjun
tion of axioms (2)

and (4) in the models of (3) is logi
ally equivalent to

f(�x; t; s)=y $ [�(�x; y; t; s) _ y=f(�x; start(s); s) ^ :	(�x; s)℄:
(5)
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We 
all the formula (5) a state evolution axiom (SEA) for the 
uent f . Note

what the SEA says: f evolves with time during s a

ording to some law whose


ontext is realized in s or stays 
onstant if no 
ontext is realized. The assumption

(4) simply states that all reasons for 
hange have been already a

ounted for in

(2) and nothing is missed. It is important to realize that D

se

, a set of SEAs,


omplements the SSAs derived in [16℄ using a similar te
hnique.

Hybrid Basi
 A
tion Theories The SEA for a temporal 
uent f does not 
om-

pletely spe
ify the behaviour of f be
ause it talks only about 
hange within a

single situation s. To 
omplete the pi
ture, we need a SSA des
ribing how the

value of f 
hanges (or does not 
hange) when an a
tion is performed. A straight-

forward way to a

omplish this would be by an axiom whi
h would enfor
e 
on-

tinuity, e.g., f(�x; time(a); do(a; s))=f(�x; time(a); s). However, this 
hoi
e would

pre
lude the ability to model a
tion-indu
ed dis
ontinuous jumps in the value

of the 
ontinuously varying quantities, su
h as the sudden 
hange of a

elera-

tion from 0 to �9:8m=s

2

when an obje
t is dropped. To 
ir
umvent this, for

ea
h temporal fun
tional 
uent f(�x; t; s), we introdu
e an auxiliary atemporal

fun
tional 
uent f

init

(�x; s) whose value in s represents the value of the quantity

modelled by f in s at the time instant start(s). We axiomatize f

init

using a

SSA derived from an e�e
t axiom for f

init

(�x; s) and a frame axiom of the form

:9y(e(�x; y; a; s)) ! f

init

(�x; do(a; s)) = f(�x; time(a); s) stating that if no rele-

vant e�e
t is invoked by the a
tion a, f

init

assumes the most re
ent value of f .

The SSA for f

init

has standard syntax and des
ribes how the initial value of f

in do(a; s) relates to its value at the same time instant in s (i.e., prior to a).

To establish a 
onsistent relationship between temporal 
uents and their init-


ounterparts, we require that, in an arbitrary situation, the 
ontinuous evolution

of ea
h temporal 
uent f starts with the value 
omputed for f

init

by its su

essor

state axiom.

A hybrid basi
 a
tion theory is a 
olle
tion of axioms D = � [ D

ss

[ D

ap

[

D

una

[ D

S

0

[ D

se

su
h that

1. Every a
tion mentioned in D is temporal;

2. �[D

ss

[D

ap

[D

una

[D

S

0


onstitutes a BAT as per De�nition 4.4.5 in [16℄;

3. D

se

is a set of SEA of the form f(�x; t; s)=y $  

f

(�x; t; y; s) where  

f

(�x; t; y; s)

is uniform in s, su
h that D

ss


ontains an SSA for f

init

;

4. For ea
h SEA of the form above, D

una

[ D

S

0

entails

8�x8t: 9y( 

f

(�x; t; y; s)) ^ 8y8y

0

( 

f

(�x; t; y; s) ^  

f

(�x; t; y

0

; s)! y=y

0

); (6)

9y(f

init

(�x; s)=y ^  

f

(�x; start(s); y; s)); (7)

A set D

se

of SEA is strati�ed i� there are no temporal 
uents f

1

; : : : ; f

n

su
h

that f

1

� f

2

� : : : � f

n

� f

1

where f � f

0

holds i� there is a SEA in D

se

where

f appears on the left-hand side and f

0

on the right-hand side. A hybrid BAT is

strati�ed i� its D

se

is.

Theorem 2. A strati�ed hybrid BAT D is satis�able i� D

una

[ D

S

0

is.
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Example 1. (See [1℄ for an illustartion and additional details.) Consider a ma
ro-

s
opi
 urban traÆ
 domain along the lines of [20℄. For simpli
ity, we 
onsider a

single interse
tion of two 2-lane roads. Fa
ing the interse
tion i are 4 in
oming

and 4 outgoing road segments. Depending on the traÆ
 light, a 
ar may turn

left, turn right, or drive straight from an in
oming lane to an outgoing lane.

Ea
h lane is denoted by a 
onstant and ea
h path through the interse
tion i is

en
oded using the predi
ates st(i; r

1

; r

2

) (straight 
onne
tion from lane r

1

to r

2

at interse
tion i), lt(i; r

1

; r

2

) (left turn), and rt(i; r

1

; r

2

) (right turn). The num-

ber of 
ars per unit of time that 
an pass through ea
h 
onne
tion is spe
i�ed

by the fun
tion flow(i; r

1

; r

2

).

The outgoing lanes are of in�nite 
apa
ity and are not modelled. The traÆ


lights are 
ontrolled by a simple looping automaton with the states Green(i; r; s)

(from lane r, go straight or turn right), followed by RArr(i; r; s) (right arrow, i.e.,

only turn right), followed by Red(i; r; s) (stop), and then LArr(i; r; s) (only turn

left), su
h that mutually orthogonal dire
tions are in antiphase to ea
h other.

The swit
hing between states for all r is triggered by the a
tion swit
h(i; t) with

pre
ondition Poss(swit
h(i; t), s) $ start(s)� t via a set of simple SSA.

The 
ontinuous quantity we wish to model is the number of 
ars at interse
-

tion i queued up in lane r. For that, we use the temporal 
uent que(i; r, t; s)

and its atemporal 
ounterpart que

init

(i; r; s). Sin
e the lane r may run dry, we


all on the natural a
tion empty(i; r; t) to 
hange the relational state:

Poss(empty(i; r; t); s)$ start(s)� t ^ que(i; r; t; s)=0;

a=empty(i; r; t) ^ y=0! que

init

(i; r; do(a; s))=y;

a 6=empty(i; r; t) ^ y=que(i; r; time(a); s)! que

init

(i; r; do(a; s))=y:

We 
an now formulate the TCA for que a

ording to traÆ
 rules. Cars do not

move at a red light: [Red(i; r; s)^ y=que

init

(i; r; s)℄! que(i; r; t; s)=y. When a

non-empty lane r sees the left (or right) arrow, its queue de
reases linearly with

the rate asso
iated with the left (resp., right) turn. For the signal Green(i; r; s),

the queue de
reases with a 
ombined rate of the straight 
onne
tion and the

right turn, i.e. y=(que

init

(i; r; s)� (flow(i; r; r

0

)+flow(i; r; r

00

))�(t�start(s)).

From these TCA, by Theorem 1, we obtain a SEA below (simpli�ed for

brevity). Noti
e that the last line 
omes not from the TCA but from the expla-

nation 
losure (4) enfor
ed by Theorem 1 and asserts the 
onstan
y of que in

the 
ontext whi
h the TCA did not 
over (movement is allowed but the lane is

empty). In general, the modeller only needs to supply the TCA for the 
ontexts

where the quantity 
hanges with time.

que(i; r; t; s)=y $ (9�9q

0

9r

L

9r

S

9r

R

):

�=(t�start(s)) ^ q

0

=que

init

(i; r; s) ^ lt(i; r; r

L

) ^ st(i; r; r

S

) ^ rt(i; r; r

R

) ^

�

LArr(i; r; s) ^ q

0

6=0 ^ y=(q

0

�flow(i; r; r

L

) � �) _

Green(i; r; s) ^ q

0

6=0 ^ y=(q

0

�(flow(i; r; r

S

)+flow(i; r; r

R

)) � �) _

RArr(i; r; s) ^ q

0

6=0 ^ y=(q

0

�flow(i; r; r

R

) � �) _

Red(i; r; s) ^ y=q

0

_ :Red(i; r; s) ^ q

0

=0 ^ y=0

�

:
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4 Regression

Proje
tion is a ubiquitous 
omputational problem 
on
erned with establish-

ing the truth value of a statement after exe
uting a given sequen
e of a
tions.

We solve it with the help of regression. The notions of uniform and regressable

formulas trivially extend to hybrid BATs. The regression operator R as de�ned

for atemporal BATs in De�nition 4.7.4 of [16℄ 
an be extended to hybrid BATs

in a straightforward way. When R is applied to a regressable formula W , R[W ℄

is determined relative to a hybrid BAT. We extend R as follows.

Let D be a hybrid BAT, and let W be a regressable formula. If W is a non-


uent atom that mentions start(do(�; �)), then R[W ℄ = R[W j

start(do(�;�))

time(�)

℄. If

W is a non-Poss atom and mentions a fun
tional 
uent uniform in �, then this

term is either atemporal or temporal. The former 
ase is 
overed by Reiter. In

the latter 
ase, the term is of the form f(

�

C; �

?

; �) and has a SEA f(�x; t; s) =

y $  

f

(�x; t; y; s), so we rename all quanti�ed variables in  

f

(�x; t; y; s) to avoid


on
i
ts with the free variables of f(

�

C; �

?

; �) and de�ne R[W ℄ to be R[9y: (�

?

=

start(�)^y=f

init

(�x; �)_�

?

6=start(�)^ 

f

(

�

C; �

?

; y; �))^W j

f(

�

C;�

?

;�)

y

℄, where y is

a new variable not o

urring free in W ,

�

C, �

?

, �. Intuitively, this transformation

repla
es the temporal 
uent f with either the value of f

init

if f is evaluated

at the time of the last a
tion or, otherwise, with the value determined by the

right-hand side of the SEA for f .

Theorem 3. If W is a regressable senten
e of SC and D is a strati�ed hybrid

basi
 a
tion theory, then D j=W i� D

S

0

[ D

una

j= R[W ℄.

Example 2. Let the initial state in the previous example entail the following:

start(S

0

) = 0; Red(I; in

1

; S

0

); que

init

(I; in

1

; S

0

) = 100;

f low(I; in

1

; out

2

) = 5; f low(I; in

1

; out

3

) = 15; f low(I; in

1

; out

4

) = 10:

Let W be que(I; in

1

; 3; �) < 95, i.e., there are fewer than 95 
ars in lane in

1

at time 3 in situation �, where � is do([swit
h(I; 1); swit
h(I; 2)℄; S

0

). In this

narrative, the lane in

1

sees the red light, whi
h at t=1 swit
hes to the left arrow,

and at t=2 to green. To 
he
k if D j=W , we use Theorem 3 to redu
e W to an

equivalent statement about S

0

:

R[que(I; in

1

; 3; �) < 95℄ = que

init

(I; in

1

; S

0

)� 10(2� 1)� (15 + 5)(3� 2) < 95:

The resulting query 
an be answered by FO means by plugging 100 for the initial

number of 
ars at in

1

: 100� 10� 20 = 70 < 95, so the statement is true.

Regression 
an also be a powerful diagnosti
 tool. By analyzing the results

of partial regression of a temporal query, one 
an attribute its validity to a

parti
ular a
tion of the narrative. Let R

�

0

be a variant of R whi
h does not

regress beyond �

0

. We 
an establish whether R

�

0

[W ℄ is true for ea
h �

0

v �

as before. In our example, the query holds during and after swit
h(I; 2) but

is false before and at the instant of swit
h(I; 1). We 
on
lude that the a
tion

swit
h(I; 1) as well as the time that has passed sin
e t=1 up to the time when

R

do(swit
h(I;1);S

0

)

[W ℄ be
ame true are responsible for the fa
t that W holds at

�. Note that W 
an be an arbitrary regressable property of the dynami
 system.
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5 Comparison with Previous Approa
hes

Considering that dis
rete-
ontinuous systems have been a hot topi
 for de
ades,

it is impossible to fairly 
ompare hybrid situation 
al
ulus to a representative

subset of all work in that area. Hen
e, we draw 
omparisons only to approa
hes

from the same paradigm.

A seminal work by Sandewall [17℄ points out that dis
arding information from

a theory 
annot lead to better inferen
es. He argues that di�erential 
al
ulus is

the perfe
t language for modelling 
ontinuous 
hange and that the essential task

in des
ribing physi
al systems is to provide a logi
al foundation for dis
rete state

transitions. Pinto [13℄ presents initial proposals to introdu
e time into the situ-

ation 
al
ulus; these works fo
use on a so-
alled a
tual sequen
e of a
tions and

introdu
ed representation for o

urren
es of a
tions w.r.t. an external time-line.

Ch. 6 of [13℄ dis
usses examples of 
ontinuous 
hange and natural events fol-

lowing [17℄, but without using Sandewall's non-monotoni
 solution to the frame

problem. It also introdu
es a 
lass of obje
ts 
alled parameters that are used to

name 
ontinuously varying properties su
h that ea
h parameter behaves a

ord-

ing to a unique fun
tion of time during a �xed situation. It is mentioned that

parameters 
an be repla
ed with fun
tional 
uents of time, but this dire
tion

was not elaborated. Building on earlier work of [17, 13℄, [11℄ introdu
es time-

independent 
uents and situation-independent parameters that 
an be regarded

as fun
tions of time, but provides only an example, and no general methodol-

ogy. [16℄ provides the modern axiomatization of time, 
on
urren
y, and natural

a
tions in SC. However, [16℄ allows only atemporal 
uents in 
ontrast to [13℄.

For this reason, [18℄ proposes an auxiliary a
tion wat
h(t) (see below).

The example in Se
tion 3 helps illustrate the di�eren
es with our approa
h.

Consider Reiter's temporal SC [16℄: sin
e 
uents are atemporal, the TCA above

are repla
ed by e�e
t axioms for the atemporal 
uent que(i; r; s), e.g.,

a=swit
h(i; t) ^

�

LArr(i; r; s) ^ que(i; r; s) 6=0 ^ 9r

0

[lt(i; r; r

0

) ^

y=(que(i; r; s)�flow(i; r; r

0

)�(time(a)�start(s))℄

�

! que(i; r; do(a; s))=y:

Note that, in e�e
t axioms, the 
hange in que is asso
iated with a named a
-

tion. The modeller must repli
ate this axiom for ea
h a
tion whi
h might a�e
t

the 
ontext LArr(i; r; s) ^ que(i; r; s) 6= 0, and likewise for all other 
ontexts

and TCA. In our approa
h, the 
hange in 
ontext is handled separately and

does not 
ompli
ate the axiomatization of 
ontinuous dynami
s. The right-hand

side of the resulting SSA, 


que

(i; r; y; s) _ que(i; r; s) = y ^ :9y

0




que

(i; r; y

0

; s),


an be obtained from the right-hand side of the SEA above by repla
ing t

with time(a), que

init

(i; r; s) with que(i; r; s), and the last line by que(i; r; s) =

y ^ :9y

0




que

(i; r; y

0

; s). Noti
e that the expression 


que

(i; r; y; s) o

urs twi
e |

�rst due to the e�e
t axiom (in a normal form) and then again due to expla-

nation 
losure | see examples in Se
tion 3.2.6 in [16℄. In our approa
h, only

the essential atemporal part of that expression appears. Furthermore, Reiter's

version of the pre
ondition axiom for empty(i; r; t) is ne
essarily 
umbersome

be
ause it mentions que(i; r; t; s), whose evolution (and thus the value at t) de-

pends on the 
urrent relational state of s. Therefore, the modeller must in
lude
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the right-hand side of the SSA in the pre
ondition, thereby in
reasing the size of

the axioms by roughly the size of the SSA for the 
ontinuous 
uent F for every

o

urren
e of F in a pre
ondition axiom while not adding any new information.

Moreover, sin
e 
uents are atemporal, evaluating them at arbitrary moments of

time t requires an auxiliary a
tion.

The approa
h due to [18℄ introdu
es the spe
ial a
tion wat
h(t) to advan
e

time to the time-point t. This allows one to a

ess 
ontinuous 
uents in between

the agent a
tions, but at a 
ost: repla
ing que(i; r; t; s) by que(i; r; do(wat
h(t); s))

in the pre
ondition axiom makes the right-hand side non-uniform in s, violates

Defn. 4.4.3 in [16℄, and thus steps outside of the well-studied realm of BATs. A

later proposal due to [8℄ 
onsiders 
uents whose values range over fun
tions of

time, but neither the 
uents nor the a
tions have a temporal argument. Domain

a
tions o

ur at the same instant as the pre
eding situation, and the me
hanism

for advan
ing time is the spe
ial a
tion waitFor(�) whi
h simulates the passage

of time until the earliest time-point where � holds. Aimed spe
i�
ally at roboti



ontrol, this approa
h relies on a 

-Golog program to trigger the waitFor a
tion.

Finzi and Pirri [6℄ introdu
e temporal 
exible situation 
al
ulus, a diale
t

aimed to provide formal semanti
s and a Golog implementation for 
onstraint-

based interval planning whi
h requires dealing with multiple alternating time-

lines. To represent pro
esses, they introdu
e 
uents with a time argument. How-

ever, this time argument marks the instant of the pro
ess' 
reation and is not

asso
iated with a 
ontinuous evolution.

6 Modelling Hybrid Automata

Hybrid BATs introdu
ed here are naturally suitable for 
apturing hybrid

automata [12℄. Given an arbitrary basi
 hybrid automaton H , 
.f., Se
tion 2, we

pro
eed as follows. For every dis
rete state in the set Q, we introdu
e a 
onstant

q

i

with 1 � i � jQj and let D

S

0


ontain unique name axioms for all q

i

. The

transition relation E is en
oded by a �nite set of fa
ts E(q; q

0

). Ea
h 
ow '

q

is

en
oded by the fun
tion flow su
h that flow(q; x; t) = y i� '

q

(x; t) = y. Ea
h

set of invariant states Inv

q

is en
oded by the predi
ate Inv(q; x) whi
h holds

i� x 2 Inv

q

. Ea
h reset relation R

q;q

0

is en
oded by the predi
ate R(q; q

0

; x; y)

whi
h holds i� y 2 R

q;q

0

(x). The set of initial states Init is en
oded by the

predi
ate Init(q; x) whi
h holds i� (q; x) 2 Init.

LetQ(s) denote the dis
rete andX(t; s) the 
ontinuous state. Let tr(q; q

0

; y; t)

be the a
tion representing a transition from state q to q

0

at time t while resetting

the 
ontinuous state to the value y. The automaton 
an be des
ribed as

Poss(tr(q; q

0

; y; t); s)$ Q(s)=q ^ E(q; q

0

) ^ R(q; q

0

; X(t; s); y) ^ Inv(q

0

; y);

Q(do(a; s))=q $ 9q

0

; y; t(a= tr(q

0

; q; y; t)) _Q(s)=q ^ :9q

0

; y; t(a= tr(q; q

0

; y; t));

X

init

(do(a; s))=x $ 9q9q

0

9t(a= tr(q; q

0

; x; t));

X(t; s)=x$

W

k

i=1

[Q(s)=q

i

^ x=flow(q

i

; X

init

(s); t)℄:
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Theorem 4. Let D be a satis�able hybrid BAT axiomatizing a hybrid automaton

H as above, let � be an exe
utable ground situation and let � � start(�). Then

D j= Init(Q(S

0

); X

init

(S

0

)) ^ (8a; s; t)

�

do(a; s)v� ^ start(s)� t� time(a) _

s=� ^ start(�) � t � �

�

! Inv(Q(s); X(s; t))

if and only if a �nite traje
tory of H 
an be uniquely 
onstru
ted from � and � .

Clearly, this axiomatization rules out non-trivial queries about the 
ontent

of the states be
ause its dis
rete states are a �nite set without obje
ts, relations,

et
. A general hybrid BAT does not have this limitation. While 
lassi
 HA are

based on a �nite representation of states and atomi
 state transitions, ri
her

representations began to attra
t the interest of the hybrid system 
ommunity.

Of parti
ular interest is the work by Platzer [15℄ based on FO dynami
 logi


extended to handle di�erential equations for des
ribing 
ontinuous 
hange. Our

work 
ontributes to this line of resear
h by providing a very ri
h representation

of the dis
rete states des
ribed relationally in FOL. Both [14℄ and our paper

propose to go beyond �nite-state HA. The key advantage of our work is in the

availability of situation terms, and therefore, the regression operator. Thus, the

usual SC-based reasoning tasks [16℄ 
an be solved in our hybrid BATs.

7 Con
lusion

Inspired by hybrid systems, we have proposed a temporal extension of SC

with a 
lear distin
tion between atemporal 
uents, responsible for transitions

between states, and temporal 
uents, representing 
ontinuous 
hange within a

state. While this paper fo
uses on semanti
s, the 
onne
tion with hybrid systems

established here opens new perspe
tives for future work on automated reasoning

as well. In hybrid systems, the pra
ti
al need for robust spe
i�
ation and veri-

�
ation tools for HA resulted in the development of a multitude of logi
-based

approa
hes (see [4℄ for an overview). More re
ently, [7℄ show that 
ertain 
lasses

of de
ision problems belong to reasonable 
omplexity 
lasses. These results pro-

vide foundations for veri�
ation of robustness in hybrid systems [9℄. Platzer's

work o�ers some de
idability results for veri�
ation based on quanti�er elimi-

nations [14, 15℄. Note that the quanti�ed di�erential dynami
 logi
 [14℄, whi
h

fo
uses on fun
tions and does not allow for arbitrary relations on obje
ts, 
annot

en
ode SC a
tion theories in an obvious way, i.e., it in
ludes only one primitive

a
tion (assignment), but BATs provide agent a
tions that 
an model a system

at a higher level of abstra
tion. Nevertheless, it may be interesting to study the

redu
tions of fragments of Golog [10℄ and BATs with or without 
ontinuous time

to su
h a dynami
 logi
, to exploit existing [14℄ and future de
idability results.

On the other hand, while resear
h in hybrid systems fo
uses on 
ertain ver-

i�
ation problems, the present paper, due to regression, proposes an approa
h

to solve other reasoning problems that 
annot be formulated in hybrid systems.

Re
ent work on bounded theories [5, 2℄ provides promising means to study de-


idable 
ases in this realm, whi
h 
ould be of interest to hybrid systems as well.
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