Notes on Game Theory MTH 503

Two person zero-sum games

Two players, \mathbf{R} and \mathbf{C} (row and column players).

R can make moves $R_1, R_2, \cdots R_m$ **C** can make moves $C_1, C_2, \cdots C_n$.

The <u>pay-off</u> to **R** for choosing move R_i and being countered by **C**'s move C_j is $p(R_i, C_j)$. **P** is the <u>pay-off matrix</u> (to **R**); $[\mathbf{P}]_{ij} = p(R_i, C_j) = p_{ij}$

Zero-sum game: The pay-off to $\mathbf{R} = \text{loss to } \mathbf{C}$, i.e., the pay-off to \mathbf{C} for choosing move $\overline{C_j}$ after \mathbf{R} chooses R_i is $-p(R_i, C_j)$

As a matrix:

	C_1	•	•		C_n
R_1	p_{11}	p_{12}	•	•	p_{1n}
•		•	•	•	
•	•	•	•	•	•
•	•	•	•	•	
R_m	p_{m1}	•	•	•	p_{mn}

Suppose the game is played many times and on average, **R** chooses R_i with frequency w_i and **C** chooses C_j with frequency x_j (i = 1, ..., m, j = 1, ..., n):

$$w_i = \lim_{k \to \infty} \frac{\# \text{ times } \mathbf{R} \text{ chooses } R_i \text{ in } k \text{ games}}{k} \qquad \qquad x_j = \lim_{k \to \infty} \frac{\# \text{ times } \mathbf{C} \text{ chooses } C_j \text{ in } k \text{ games}}{k}$$

So $w_1 + \cdots + w_m = 1$ with all $w_i \ge 0$ and $x_1 + \cdots + x_n = 1$ with all $x_j \ge 0$.

A <u>strategy</u> for **R** is such a vector $\mathbf{w} = w_1, \ldots, w_m$, and a strategy for **C** is a such vector $\mathbf{x} = x_1, \ldots, x_n$.

Goal of each player: To determine a strategy that guarantees a minimum expected payoff (in the long run) *regardless* of the moves of the other player. Such a strategy is called an optimal strategy and will be denoted by \mathbf{w}^* and \mathbf{x}^* for \mathbf{R} and \mathbf{C} respectively.

Are there optimal strategies for **R** and **C**? If there is, then **R** will realize his minimum expected pay-off and **C** will realize her expected minimum pay-off. The <u>value</u> v of the game is the minimum expected pay-off to **R**: $v = \sum_{i,j} w_i^* x_j^* p_{ij} = \mathbf{w}^* \mathbf{P}(\mathbf{x}^*)^t$.

Pure Strategies: \mathbf{R} and \mathbf{C} will always choose the same move, i.e.,

 $w_i = 1$ for some *i* and $w_l = 0$ for all $l \neq i$, $x_j = 1$ for some *j* and $x_k = 0$ for all $k \neq j$

Mixed Strategies: **R** and **C** will choose different moves; all $w_i < 1$ and all $x_j < 1$.

Example 1

	C_1	C_2		\min	\max
R_1	2	-2	\rightarrow	-2	
					-2
R_2	-3	4	\rightarrow	-3	
	Ţ	Ļ			
max	$\dot{2}$	4			
\min		2			

So **R**'s <u>min-max strategy</u> is R_1 ; if **R** chooses R_1 then no matter what moves **C** makes, **R** will get <u>at least</u> -2 pay-off (i.e., a minimum loss). The <u>value of the min-max strategy</u> is -2. While **C**'s <u>max-min strategy</u> is C_1 ; if **C** chooses C_1 , then no matter what moves **R** makes, **C** won't lose more than 2. The value of the max-min strategy is 2.

Here, the value of the min-max strategy \neq the value of the max-min strategy. When this happens the min-max and max-min strategies are <u>not</u> compatible; **R** and **C** cannot <u>both</u> persue these pure strategies. If **R** sticks to R_1 , then **C** will (or should!) eventually choose C_2 to maximize her pay-off. But then **R** will (or should!) switch to R_2 to maximize his pay-off, etc. So **R** and **C** will be <u>forced</u> to choose mixed strategies. However, if the value of min-max strategy = the value of the max-min strategy (as in Example 2), then the max-min and min-max strategies are <u>compatible</u>. When this happens we say that the game has a saddle point.

Example 2

	C_1	C_2		\min	max
R_1	0	5	\rightarrow	0	
					2
R_2	2	4	\rightarrow	2	
	\downarrow	\downarrow			
max	2	5			
\min		2			

Here, R_2 is the min-max strategy and C_1 is the max-min strategy. **R** can always choose R_2 while **C** can always choose C_1 . The value of this game is $v = [0,1] \begin{bmatrix} 0 & 5 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 2$. **R** will obtain a pay-off of 2 if he sticks to R_2 and if **C** sticks to C_1 . However, if **C** deviates from C_1 then **R** will do <u>better</u> than 2. Similarly, **C** will pay a maximum of 2 if she sticks to C_1 and if **R** sticks to R_2 . However, if **R** deviates from R_2 then **C** will pay less than 2. Thus, these strategies are <u>optimal</u>. (Remark: A game can have more than one saddle point.)

Back to Example 1. <u>**R**'s goal</u>: Suppose **R** chooses R_1 and R_2 with frequencies w_1 and w_2 . Then

pay-off (to **R**) when **C** chooses C_1 : $2w_1 - 3w_2$ pay-off (to **R**) when **C** chooses C_2 : $-2w_1 + 4w_2$

Let $u = \text{average pay-off to } \mathbf{R}$ (i.e., in the long run). Then, to play it <u>safe</u>, \mathbf{R} wants to choose w_1 and w_2 so that he receives a guaranteed expected pay-off no matter what \mathbf{C} does. Thus, \mathbf{R} wants to maximize u subject to

Solution: $\mathbf{w}^* = (.6364, .3636), \ u^* = .1818.$

C's goal: Suppose **C** chooses C_1 and C_2 with frequencies x_1 and x_2 . Then

pay-off (to \mathbf{R} !) when \mathbf{R} chooses R_1 : $2x_1 - 2x_2$ pay-off (to \mathbf{R} !) when \mathbf{R} chooses R_2 : $-3x_1 + 4x_2$

Let z = average pay-off to \mathbf{R} (!). Then \mathbf{C} wants to choose x_1 and x_2 so that she receives a guaranteed expected pay-off *no matter what* \mathbf{R} *does* (the <u>safe</u> choice). Thus, \mathbf{C} wants to minimize y subject to

Solution: $\mathbf{x}^* = (.5454, .4545), \ y^* = .1818.$

<u>Homework</u>: Show that the LP problem (2) is the dual of the LP problem (1).

<u>Result</u>: The optimal solutions \mathbf{w}^* and \mathbf{x}^* of (1) and (2) are the optimal strategies for **R** and **C**. Furthermore, \mathbf{w}^* and \mathbf{x}^* are <u>compatible</u>. The <u>value of the mixed strategies</u> is $v = \mathbf{w}^* \mathbf{P}(\mathbf{x}^*)^t = .1818$.

Fundamental Theorem of Games: In the absence of saddle points, optimal mixed strategies always exist.

$\underline{\text{Extensions}}$:

- Two-person nonconstant-sum games
- N-person games
- Differential games

Applications:

- Economics
- Control theory

<u>References</u>

Bazaraa et. al., Linear Programing and Network Flows, Exercise 6.25, page 306.

A. Rapoport, Two-Person Game Theory. (Dover paperback.)

W. Winston, Operations Research, Chapter 15.