
Notes on Game Theory

MTH 503

Two person zero-sum games

Two players, R and C (row and column players).

R can make moves R1, R2, · · · Rm

C can make moves C1, C2, · · · Cn.

The pay-off to R for choosing move Ri and being countered by C’s move Cj is p(Ri, Cj).

P is the pay-off matrix (to R); [P]ij = p(Ri, Cj) = pij

Zero-sum game: The pay-off to R = loss to C, i.e., the pay-off to C for choosing move
Cj after R chooses Ri is −p(Ri, Cj)

As a matrix:

C1 . . . Cn

R1 p11 p12 . . p1n

· . . . . .
· . . . . .
· . . . . .
Rm pm1 . . . pmn

Suppose the game is played many times and on average, R chooses Ri with frequency
wi and C chooses Cj with frequency xj (i = 1, . . . ,m, j = 1, . . . , n):

wi = lim
k→∞

# times R chooses Ri in k games

k
xj = lim

k→∞

# times C chooses Cj in k games

k

So w1 + · · ·+ wm = 1 with all wi ≥ 0 and x1 + · · ·+ xn = 1 with all xj ≥ 0.

A strategy for R is such a vector w = w1, . . . , wm, and a strategy for C is a such vector
x = x1, . . . , xn.

Goal of each player: To determine a strategy that guarantees a minimum expected payoff
(in the long run) regardless of the moves of the other player. Such a strategy is called an
optimal strategy and will be denoted by w∗ and x∗ for R and C respectively.

Are there optimal strategies for R and C? If there is, then R will realize his minimum
expected pay-off and C will realize her expected minimum pay-off. The value v of the
game is the minimum expected pay-off to R : v =

∑
i,j w∗

i x
∗
jpij = w∗P(x∗)t.
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Pure Strategies: R and C will always choose the same move, i.e.,

wi = 1 for some i and wl = 0 for all l 6= i,

xj = 1 for some j and xk = 0 for all k 6= j

Mixed Strategies: R and C will choose different moves; all wi < 1 and all xj < 1.

Example 1

C1 C2 min max
R1 2 −2 → −2

−2
R2 −3 4 → −3

↓ ↓
max 2 4
min 2

So R’s min-max strategy is R1; if R chooses R1 then no matter what moves C makes, R
will get at least −2 pay-off (i.e., a minimum loss). The value of the min-max strategy is
−2. While C’s max-min strategy is C1; if C chooses C1, then no matter what moves R
makes, C won’t lose more than 2. The value of the max-min strategy is 2.

Here, the value of the min-max strategy 6= the value of the max-min strategy. When
this happens the min-max and max-min strategies are not compatible; R and C cannot
both persue these pure strategies. If R sticks to R1, then C will (or should!) eventually
choose C2 to maximize her pay-off. But then R will (or should!) switch to R2 to maximize
his pay-off, etc. So R and C will be forced to choose mixed strategies. However, if the
value of min-max strategy = the value of the max-min strategy (as in Example 2), then
the max-min and min-max strategies are compatible. When this happens we say that
the game has a saddle point.

Example 2

C1 C2 min max
R1 0 5 → 0

2
R2 2 4 → 2

↓ ↓
max 2 5
min 2
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Here, R2 is the min-max strategy and C1 is the max-min strategy. R can always choose

R2 while C can always choose C1. The value of this game is v = [0, 1]

[
0 5
2 4

] [
1
0

]
= 2. R

will obtain a pay-off of 2 if he sticks to R2 and if C sticks to C1. However, if C deviates
from C1 then R will do better than 2. Similarly, C will pay a maximum of 2 if she sticks
to C1 and if R sticks to R2. However, if R deviates from R2 then C will pay less than
2. Thus, these strategies are optimal. (Remark: A game can have more than one saddle
point.)

Back to Example 1. R’s goal: Suppose R chooses R1 and R2 with frequencies w1 and
w2. Then

pay-off (to R) when C chooses C1: 2w1 − 3w2

pay-off (to R) when C chooses C2: −2w1 + 4w2

Let u = average pay-off to R (i.e., in the long run). Then, to play it safe, R wants to
choose w1 and w2 so that he receives a guaranteed expected pay-off no matter what C
does. Thus, R wants to maximize u subject to

2w1 − 3w2 ≥ u

−2w1 + 4w2 ≥ u

w1 + w2 = 1
w1, w2 ≥ 0

u ∈ R

(1)

Solution: w∗ = (.6364, .3636), u∗ = .1818.

C’s goal: Suppose C chooses C1 and C2 with frequencies x1 and x2. Then

pay-off (to R !) when R chooses R1: 2x1 − 2x2

pay-off (to R !) when R chooses R2: −3x1 + 4x2

Let z = average pay-off to R (!). Then C wants to choose x1 and x2 so that she receives
a guaranteed expected pay-off no matter what R does (the safe choice). Thus, C wants
to minimize y subject to

2x1 − 2x2 ≤ y

−3x1 + 4x2 ≤ y

x1 + x2 = 1
x1, x2 ≥ 0

y ∈ R

(2)

Solution: x∗ = (.5454, .4545), y∗ = .1818.

Homework: Show that the LP problem (2) is the dual of the LP problem (1).

Result: The optimal solutions w∗ and x∗ of (1) and (2) are the optimal strategies for
R and C. Furthermore, w∗ and x∗ are compatible. The value of the mixed strategies is
v = w∗P(x∗)t = .1818.
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Fundamental Theorem of Games: In the absence of saddle points, optimal mixed
strategies always exist.

Extensions:

• Two-person nonconstant-sum games
• N-person games
• Differential games

Applications:

• Economics
• Control theory
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