Notes on Game Theory MTH 503

Two person zero-sum games

Two players, \mathbf{R} and \mathbf{C} (row and column players).
\mathbf{R} can make moves $R_{1}, R_{2}, \cdots R_{m}$
\mathbf{C} can make moves $C_{1}, C_{2}, \cdots C_{n}$.
The pay-off to \mathbf{R} for choosing move R_{i} and being countered by \mathbf{C} 's move C_{j} is $p\left(R_{i}, C_{j}\right)$.
\mathbf{P} is the pay-off matrix (to \mathbf{R}); $[\mathbf{P}]_{i j}=p\left(R_{i}, C_{j}\right)=p_{i j}$
Zero-sum game: The pay-off to $\mathbf{R}=$ loss to \mathbf{C}, i.e., the pay-off to \mathbf{C} for choosing move C_{j} after \mathbf{R} chooses R_{i} is $-p\left(R_{i}, C_{j}\right)$

As a matrix:

	C_{1}	\cdot	\cdot	\cdot	C_{n}
R_{1}	p_{11}	p_{12}	\cdot	\cdot	$p_{1 n}$
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
R_{m}	$p_{m 1}$	\cdot	\cdot	\cdot	$p_{m n}$

Suppose the game is played many times and on average, \mathbf{R} chooses R_{i} with frequency w_{i} and \mathbf{C} chooses C_{j} with frequency $x_{j}(i=1, \ldots, m, \quad j=1, \ldots, n)$:

$$
w_{i}=\lim _{k \rightarrow \infty} \frac{\# \text { times } \mathbf{R} \text { chooses } R_{i} \text { in } k \text { games }}{k} \quad x_{j}=\lim _{k \rightarrow \infty} \frac{\# \text { times } \mathbf{C} \text { chooses } C_{j} \text { in } k \text { games }}{k}
$$

So $w_{1}+\cdots+w_{m}=1$ with all $w_{i} \geq 0$ and $x_{1}+\cdots+x_{n}=1$ with all $x_{j} \geq 0$.
A strategy for \mathbf{R} is such a vector $\mathbf{w}=w_{1}, \ldots, w_{m}$, and a strategy for \mathbf{C} is a such vector $\mathbf{x}=x_{1}, \ldots, x_{n}$.

Goal of each player: To determine a strategy that guarantees a minimum expected payoff (in the long run) regardless of the moves of the other player. Such a strategy is called an optimal strategy and will be denoted by \mathbf{w}^{*} and \mathbf{x}^{*} for \mathbf{R} and \mathbf{C} respectively.

Are there optimal strategies for \mathbf{R} and \mathbf{C} ? If there is, then \mathbf{R} will realize his minimum expected pay-off and \mathbf{C} will realize her expected minimum pay-off. The value v of the game is the minimum expected pay-off to $\mathbf{R}: v=\sum_{i, j} w_{i}^{*} x_{j}^{*} p_{i j}=\mathbf{w}^{*} \mathbf{P}\left(\mathbf{x}^{*}\right)^{t}$.

Pure Strategies: \mathbf{R} and \mathbf{C} will always choose the same move, i.e.,

$$
\begin{array}{ll}
w_{i}=1 & \text { for some } i \text { and } w_{l}=0 \text { for all } l \neq i, \\
x_{j}=1 & \text { for some } j \text { and } x_{k}=0 \text { for all } k \neq j
\end{array}
$$

Mixed Strategies: \mathbf{R} and \mathbf{C} will choose different moves; all $w_{i}<1$ and all $x_{j}<1$.
Example 1

	C_{1}	C_{2}		\min	\max	
R_{1}	2	-2	\rightarrow	-2		
					-2	
R_{2}	-3	4	\rightarrow	-3		
	\downarrow	\downarrow				
\max	2		4			
\min		2				

So \mathbf{R} 's min-max strategy is R_{1}; if \mathbf{R} chooses R_{1} then no matter what moves \mathbf{C} makes, \mathbf{R} will get at least -2 pay-off (i.e., a minimum loss). The value of the min-max strategy is -2 . While \mathbf{C} 's max-min strategy is C_{1}; if \mathbf{C} chooses C_{1}, then no matter what moves \mathbf{R} makes, \mathbf{C} won't lose more than 2 . The value of the max-min strategy is 2 .

Here, the value of the min-max strategy \neq the value of the max-min strategy. When this happens the min-max and max-min strategies are not compatible; \mathbf{R} and \mathbf{C} cannot both persue these pure strategies. If \mathbf{R} sticks to R_{1}, then \mathbf{C} will (or should!) eventually choose C_{2} to maximize her pay-off. But then \mathbf{R} will (or should!) switch to R_{2} to maximize his pay-off, etc. So \mathbf{R} and \mathbf{C} will be forced to choose mixed strategies. However, if the value of min-max strategy $=$ the value of the max-min strategy (as in Example 2), then the max-min and min-max strategies are compatible. When this happens we say that the game has a saddle point.

Example 2

	C_{1}	C_{2}		\min	\max	
R_{1}	0	5	\rightarrow	0		
					2	
R_{2}	2	4	\rightarrow	2		
	\downarrow	\downarrow				
\max	2		5			
\min		2				

Here, R_{2} is the min-max strategy and C_{1} is the max-min strategy. \mathbf{R} can always choose R_{2} while \mathbf{C} can always choose C_{1}. The value of this game is $v=[0,1]\left[\begin{array}{ll}0 & 5 \\ 2 & 4\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=2 . \mathbf{R}$ will obtain a pay-off of 2 if he sticks to R_{2} and if \mathbf{C} sticks to C_{1}. However, if \mathbf{C} deviates from C_{1} then \mathbf{R} will do better than 2. Similarly, \mathbf{C} will pay a maximum of 2 if she sticks to C_{1} and if \mathbf{R} sticks to R_{2}. However, if \mathbf{R} deviates from R_{2} then \mathbf{C} will pay less than 2. Thus, these strategies are optimal. (Remark: A game can have more than one saddle point.)

Back to Example 1. R's goal: Suppose \mathbf{R} chooses R_{1} and R_{2} with frequencies w_{1} and w_{2}. Then

$$
\begin{array}{lr}
\text { pay-off (to } \mathbf{R} \text {) when } \mathbf{C} \text { chooses } C_{1} \text { : } & 2 w_{1}-3 w_{2} \\
\text { pay-off (to } \mathbf{R} \text {) when } \mathbf{C} \text { chooses } C_{2} \text { : } & -2 w_{1}+4 w_{2}
\end{array}
$$

Let $u=$ average pay-off to \mathbf{R} (i.e., in the long run). Then, to play it safe, \mathbf{R} wants to choose w_{1} and w_{2} so that he receives a guaranteed expected pay-off no matter what \mathbf{C} does. Thus, \mathbf{R} wants to maximize u subject to

$$
\begin{align*}
2 w_{1}-3 w_{2} & \geq u \\
-2 w_{1}+4 w_{2} & \geq u \\
w_{1} & +w_{2} \tag{1}\\
= & 1 \\
w_{1}, & w_{2}
\end{align*}
$$

Solution: $\quad \mathbf{w}^{*}=(.6364, .3636), u^{*}=.1818$.
C's goal: Suppose \mathbf{C} chooses C_{1} and C_{2} with frequencies x_{1} and x_{2}. Then

$$
\begin{array}{lr}
\text { pay-off (to } \mathbf{R} \text { !) when } \mathbf{R} \text { chooses } R_{1} \text { : } & 2 x_{1}-2 x_{2} \\
\text { pay-off (to } \mathbf{R} \text { !) when } \mathbf{R} \text { chooses } R_{2} \text { : } & -3 x_{1}+4 x_{2}
\end{array}
$$

Let $z=$ average pay-off to \mathbf{R} (!). Then \mathbf{C} wants to choose x_{1} and x_{2} so that she receives a guaranteed expected pay-off no matter what \mathbf{R} does (the safe choice). Thus, \mathbf{C} wants to minimize y subject to

$$
\begin{align*}
2 x_{1}-2 x_{2} & \leq y \\
-3 x_{1}+4 x_{2} & \leq y \\
x_{1}+x_{2} & =1 \tag{2}\\
x_{1}, & x_{2}
\end{aligned} \geq 0 \begin{aligned}
y & \in R
\end{align*}
$$

Solution: $\mathrm{x}^{*}=(.5454, .4545), y^{*}=.1818$.
Homework: Show that the LP problem (2) is the dual of the LP problem (1).
Result: The optimal solutions \mathbf{w}^{*} and \mathbf{x}^{*} of (1) and (2) are the optimal strategies for \mathbf{R} and \mathbf{C}. Furthermore, \mathbf{w}^{*} and \mathbf{x}^{*} are compatible. The value of the mixed strategies is $v=\mathbf{w}^{*} \mathbf{P}\left(\mathbf{x}^{*}\right)^{t}=.1818$.

Fundamental Theorem of Games: In the absence of saddle points, optimal mixed strategies always exist.

Extensions:

- Two-person nonconstant-sum games
- N-person games
- Differential games

Applications:

- Economics
- Control theory

References
Bazaraa et. al., Linear Programing and Network Flows, Exercise 6.25, page 306.
A. Rapoport, Two-Person Game Theory. (Dover paperback.)
W. Winston, Operations Research, Chapter 15.

