Notes on Game Theory
MTH 503

Two person zero-sum games

Two players, R and C (row and column players).

R can make moves Ri, R, --- R,
C can make moves Cp, Cy, --- C),.

The pay-off to R for choosing move R; and being countered by C’s move C; is p(R;, C;).
P is the pay-off matrix (to R); [P];; = p(Ri, C;) = pij

Zero-sum game: The pay-off to R = loss to C, i.e., the pay-off to C for choosing move
C; after R chooses R; is —p(R;, C})

As a matrix:
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Suppose the game is played many times and on average, R chooses R; with frequency
w; and C chooses C; with frequency z; (i =1,...,m, j=1,...,n):

# times R chooses R; in k games )
w; = lim x; = lim

# times C chooses C; in k games

So wy + -+ -+ wy, = 1 with all w; > 0 and 2y +--- + x,, = 1 with all z; > 0.

A strategy for R is such a vector w = wy, ..., w,,, and a strategy for C is a such vector
X =T1,...,Tp.

Goal of each player: To determine a strategy that guarantees a minimum expected payoft
(in the long run) regardless of the moves of the other player. Such a strategy is called an
optimal strategy and will be denoted by w* and x* for R and C respectively.

Are there optimal strategies for R and C? If there is, then R will realize his minimum
expected pay-off and C will realize her expected minimum pay-off. The value v of the
game is the minimum expected pay-off to R: v =%; ; wizjp; = w*P(x*)",



Pure Strategies: R and C will always choose the same move, i.e.,

w; =1 for some ¢ and w; = 0 for all [ # 1,

rj =1 for some j and z;, =0 for all & # j

Mized Strategies: R and C will choose different moves; all w; <1 and all z; < 1.

Example 1

C Cy min max

R 2 -2 — -2
—2

RQ -3 4 — -3

! !
max 2 4
min 2

So R’s min-max strategy is Ry; if R chooses R; then no matter what moves C makes, R
will get at least —2 pay-off (i.e., a minimum loss). The value of the min-max strategy is
—2. While C’s max-min strategy is C; if C chooses C1, then no matter what moves R
makes, C won’t lose more than 2. The value of the max-min strategy is 2.

Here, the value of the min-max strategy # the value of the max-min strategy. When
this happens the min-max and max-min strategies are not compatible; R and C cannot
both persue these pure strategies. If R sticks to Ry, then C will (or should!) eventually
choose Cy to maximize her pay-off. But then R will (or should!) switch to R to maximize
his pay-off, etc. So R and C will be forced to choose mixed strategies. However, if the

value of min-max strategy = the value of the max-min strategy (as in Example 2), then
the max-min and min-max strategies are compatible. When this happens we say that
the game has a saddle point.

Example 2

C Cy min max

R 0 5 — 0
2

Ry 2 4 — 2

! !
max 2 5
min 2



Here, Rs is the min-max strategy and C] is the max-min strategy. R can always choose

Ry while C can always choose C'y. The value of this game is v = [0, 1] [ g i ] l (1) 1 =2. R

will obtain a pay-off of 2 if he sticks to Ry and if C sticks to C;. However, if C deviates
from C then R will do better than 2. Similarly, C will pay a maximum of 2 if she sticks
to (1 and if R sticks to Ry. However, if R deviates from Ry then C will pay less than
2. Thus, these strategies are optimal. (Remark: A game can have more than one saddle
point.)

Back to Example 1. R’s goal: Suppose R chooses R; and Ry with frequencies w; and
wy. Then

pay-off (to R) when C chooses Ci: 2w, — 3wo
pay-off (to R) when C chooses Cy: —2wq + 4ws

Let u = average pay-off to R (i.e., in the long run). Then, to play it safe, R wants to
choose w; and wsy so that he receives a guaranteed expected pay-off no matter what C
does. Thus, R wants to maximize u subject to

2w1 — 31U2 Z
—2w; + 4wy, >
wy + w2 =
wi, we >
€

—_
—~

—_
~—

Solution: w* = (.6364, .3636), u* = .1818.

C’s goal: Suppose C chooses C and Cy with frequencies x; and x9. Then

pay-off (to R!) when R chooses Ry: 211 — 219
pay-off (to R!) when R chooses Ry: —3x1 + 42

Let z = average pay-off to R (!). Then C wants to choose x; and x5 so that she receives
a guaranteed expected pay-off no matter what R does (the safe choice). Thus, C wants
to minimize y subject to

201 — 219 <y
-3 + 4z <y
1 + I = 1 (2)
x1, ) ZO
y €R

Solution: x* = (.5454, .4545), y* = .1818.
Homework: Show that the LP problem (2) is the dual of the LP problem (1).

Result: The optimal solutions w* and x* of (1) and (2) are the optimal strategies for
R and C. Furthermore, w* and x* are compatible. The value of the mixed strategies is
v =w'P(x*)" = .1818.




Fundamental Theorem of Games: In the absence of saddle points, optimal mixed
strategies always exist.

Extensions:

e T'wo-person nonconstant-sum games
e N-person games
e Differential games

Applications:

e Fconomics
e Control theory
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