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Abstract. We combine a new user initialization process with a B-spline
snake to create a model with the properties of a deformable template.
This ‘template’ snake can be constrained by its control polygon and is
initially extremely close to, and similar in shape to, the target anatomical
structure. The initialization process acts as almost a pre-segmentation
and labelling step, making the snake’s task much simpler and hence
more likely to succeed in noisy images without subsequent user editing.
By imposing an order on the initialization process, the user is able to
transfer knowledge of global shape, symmetry, landmark position etc.
to the model. We apply our snake to the segmentation of 2D medical
images.

1 Introduction

Rapid and accurate segmentation of anatomical structures from medical images
is a persistent problem that continues to impede the timely analysis of these
structures. Robust, fully automatic segmentation systems have proved extremely
challenging to develop. Consequently, a more immediate and significant impact
on MIA may be realized by optimizing the capabilities of semi-automatic tech-
niques, to the point where only a small amount of time and labor is required to
process complex data sets. To achieve this goal, the recognition capabilities of
the human expert must be fully exploited. Semi-automatic techniques that assist
the human expert in the extraction of the structures must be designed to not
only be fast and intuitive, but also permit the interactive transfer of structure
shape and appearance knowledge from the expert in order to ensure segmenta-
tion accuracy, robustness and reproducibility with a minimal user editing phase.
This is especially important when processing a large number of image slices from
a volume image or a time series, or when processing very noisy images.

Active contour models (Snakes) and their variants have become widely pop-
ular in medical image segmentation and are still intensively applied and re-
searched. The difficult challenge in improving these techniques is to develop
more effective user initialization mechanisms, along with control mechanisms
that can guide the optimization-driven segmentation process at an appropri-
ately high level of abstraction [I]. One way to achieve this is to have the human
expert recognize landmarks and other critical shape features and transfer this
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information in such a way that the snake is explicitly ‘aware’ of where it is in
the image, how its ‘parts’ are arranged, and what structure it is segmenting.

We apply some of these ideas in a semi-automatic segmentation context by
prescribing custom snake initialization processes for each anatomical structure.
The intuitive and general initialization process makes use of simple line prim-
itives that are quickly drawn across the target structure at critical points in
a pre-specified order. These line primitives are then used to construct a con-
trol polygon of a finite element B-spline snake [2|. By taking advantage of the
properties of B-splines, we are able to create a model more like a template -
a snake constrained by its control polygon that is initially extremely close to
and similar in shape to the target structure. The initialization process acts as
almost a pre-segmentation and labelling step, making the model’s job much sim-
pler and hence more likely to succeed without user editing. By drawing lines in
a pre-specified order across the target structure, the human expert is able to
transfer knowledge of structure shape, image appearance etc. to the model. This
information can then be utilized by a high-level snake fitting algorithm. Finally,
the recognition and identification of critical shape features by the expert also
provides key information to subsequent shape analysis.

2 Motivation and Background

The classical snakes model, introduced by [3], is typically initialized by tracing
a rough curve near the target boundary. This process is somewhat tedious and
error prone, and often results in the snake latching onto spurious or neighbor
structure boundaries. A correction step is then required to pull the snake off the
incorrect boundaries into the correct position. Furthermore, in noisy regions the
user is required to impose additional constraints, in the form of ‘pin’ points for
example. These problems are even more apparent when processing a number of
slices in a volume image or a time series.

Since an accurate initialization is needed in order for the snake to lock onto
the correct image features, researchers have been actively investigating tech-
niques to mitigate the sensitivity of snakes to their initialization. Among these
techniques is the use of an inflation force [], gradient vector flow fields [5], and
the use of automatic snake element subdivision methods [6] [7][8]. These tech-
niques can work well if the image feature map is relatively clean. However, most
clinical images are noisy, contain many uninteresting edges, or texture is present.
Hence, these more automated techniques do not work as expected and are sensi-
tive to parameter settings. Livewire is a recently proposed interactive boundary
tracing technique [9JT0]. While an effective and efficient method for many ob-
jects, it is still fundamentally tracing-based and may require considerable user
interaction and user concentration for noisy clinical images. In addition, Livewire
is not as amenable for segmenting multiple image slices in a time series or in
volume images or utilizing more automatic high-level fitting algorithms as are
snakes, and its segmentation editing semantics are limited.
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The most robust model-based techniques are arguably deformable template
models, which are typically designed to be fully automatic and carefully hand-
crafted or trained for one anatomical structures and image modality. These mod-
els incorporate some form of prior information about object shape and/or object
image intensities [II][12]. The success of these models often lies in how effec-
tively they utilize higher-level object shape and image appearance information
that manifests itself at multiple scales and locations with respect to the object.
General interactive techniques such as snakes and livewire typically utilize small
scale, local boundary information due primarily to their user initialization and
manipulation processes.

3 User-Defined B-Spline Template Snakes

In order to optimize the performance of semi-automatic models, they must fully
exploit user image interpretation. Initialization processes that use tracing-like
actions around the object boundary are inherently limited in this ability. In
this paper, we introduce a new initialization process, coupled with the power
of a B-spline curve, to create a semiautomatic snake that has the properties of
a deformable template. The snake is efficiently initialized such that it is very
close in shape and position to the target object and such that it knows its
position with respect to the object. This 'template’ snake is built on top of an
existing powerful and general snakes package [2], hence there is no need to use
predefined, restrictive shape representations like superquadrics. Furthermore, B-
spline snakes have many desirable properties. They are a compact, parameterized
model with a control polygon which can be used for global deformation control
and customized deformation handles.

3.1 Finite Element B-Spline Snakes

In this section, we briefly review the formulation of finite element B-spline snakes.
For details, we refer the reader to [2].

A snake is a time-varying parametric contour v(s,t) = (z(s,t),y(s,t)) in the
image plane (x,y) € %2, where x and y are coordinate functions of the parameter
s € 1]0,L] and t is time. In a finite element formulation, the parametric domain
0 < s < L is partitioned into finite sub-domains, so that the snake contour is
divided into “snake elements”. Each element e is represented geometrically with
shape functions N(s) involving shape parameters u®(t). The shape parameters of
all the elements are collected together into the snake parameter vector w(t). This
leads to a discrete form of the equations of motion, which govern the shape of
the dynamic contour, as a system of second-order ordinary differential equations
in u(t):

Mu+ Cu+ Ku = F, (1)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix,
and F'is the external force vector. The external forces consist of image forces and
user constraint forces. The image forces are typically the negative gradient of
some image potential function —V P;(v). The user may guide the dynamic snake
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via time-varying interaction forces f(s,t), typically applied via an input device,
driving the snake out of one energy minimizing equilibrium and into another,
or these forces may also be derived from other user-initiated constraints. The
stiffness matrix K is assembled from element stiffness sub-matrices K° that
depend on the shape functions N (the matrices M, C, and the vector of nodal
external forces F are assembled in a similar way and also depend on N).

An analytic form of the external forces is generally not available. Therefore,
Gauss-Legendre quadrature may be employed to approximate the value of the
integral for the element external force vector F°. For element e; we have

F =137 pilNu(&) (=Y Pr(0()), (2)

where §; and p; are the jth Gaussian integration point and its corresponding
weighting coefficient, respectively, and [ is the element parametric length.

For B-spline shape functions, v(s) is constructed as a weighted sum of Npg
basis functions B,(s), n = 0,..., Ng — 1 as follows: v(s) = B(S)TQ, where
B(s) = [By(s),...., Bn,-1(s)] ", Q = [po,...,pNB_l]T and p; are the control
points. A B-spline span serves as an element in our finite element formulation.
Consequently, we determine the nodal variables (i.e., snake shape parameters -
the position of the control points in a B-spline snake), the shape matrix, and the
assembling matrix associated with a span.

3.2 B-Spline Template Snake Initialization Process

The new initialization process is simple but very effective. The user uses a mouse
or pen input device to add cross-sectional lines to the target structure. A point
is ‘clicked’ on one side of the object boundary and a line is stretched and rotated
interactively to a point on the opposite boundary. For end cap regions of objects,
the user draws lines approximately tangent to the region.

Fig. 1. Example of initialization process. In (a) the user enters lines, starting from the
left side of the corpus callosum and proceeding to the right. In (b) the B-spline control
polygon is shown, (c) initial B-spline snake, (d) segmentation result.

The user adds lines in a prescribed order for a particular object, and in
prescribed critical locations, such as landmark points. For example, to segment
the corpus callosum (CC), the user starts at the end cap region near the rostrum
(extreme left). A small line, tangent to the end cap region is drawn (Fig.[Il). The
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user then identifies the genu and draws a line across the CC in this region. The
user then draws two additional lines, where the first line roughly divides the CC
into half and the next line demarcates the splenium region. The splenium is then
identified and a line is drawn tangent to the splenium end cap region. The user
may also then use additional lines to demarcate the fornix if it appears attached
to the CC. This process, once learned, is fast and intuitive. Drawing cross-section
lines is natural and is less tedious than tracing around an object. Figure [I(b)
shows the resulting control polygon, Fig. [{l(c) shows the initial B-spline snake,
while Fig. [d) shows the final segmentation.

Once the prescribed lines are drawn (or alternatively, as the lines are drawn),
the algorithm uses them to automatically construct a customized control poly-
gon, and displays the resulting B-spline curve. The user may also ‘click’ on con-
trol polygon edges or control points, and then add new lines or control points.
The control polygon is updated and the new curve displayed. These new lines and
points may be added during initialization or while the snake is running. Using
this simple but effective process, the user recognizes critical points and regions
in a specified order, and transfers this knowledge to model. Knowledge of global
shape, such as width, is transferred, and the template snake is ‘aware’ of it’s
position with respect to the object. The snake is parameterized using optimally-
placed minimum number of degrees of freedom (DOF). Thus, the model is more
like a deformable template than a local snake model - it is less sensitive to noise
and more amenable to propagation to subsequent image slices in a volume im-
age or time series. Unlike a traditional deformable template model however, it
is constructed and positioned by the user rather than preconstructed and auto-
matically initialized by the segmentation system.

3.3 User-Customizable External Image Forces and Constraints

The initialization process results in each snake element or span roughly corre-
sponding to a specific object boundary segment. This information is used to
construct user-programmable object-specific external image forces. Among the
features we have implemented are the following:

— The number of points in each element, which we term snake points, at which
to compute image forces can be specified. For example, the number of snake
points can be matched to the image resolution, so that there is roughly
one snake point for each pixel along the element. The forces computed at
a snake point are then distributed to the corresponding control points (2)).
This feature makes the snake less sensitive to noise or spurious image edges.

— For each snake element, a search along the normal direction at a snake point
is carried out, for a small, user-specified distance (typically only two or three
pixels). The search criteria can be set for the strongest edges or edges with
a specific magnitude. Since the initial model is close in shape to the object,
edge direction can also be used if desired. Local image intensity statistics
along and around the user input lines can also be gathered and used to set
local image thresholds. If a matching edge point is found, a spring force is
applied to attract the snake point to it. If no matching edge is found (in the
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case of a boundary gap or noise), this point does not contribute to the image
forces.

— The end points of the user input lines can be used very effectively as soft
‘pin’ constraints. Points on the snake closest to these boundary points are
attracted to them by a spring force.

— The B-spline control polygon is a coarse approximation of the curve and
hence a coarse approximation of the target object boundary (Fig.[b). It is
therefore a convenient frame upon which to build global model deformation
control. With the push of a button, the control points can be connected with
springs (including control points on opposite sides of the polygon), and these
spring constraint forces can be included on the right hand side of equation
(M. The control polygon acts as a spring-mass lattice, constraining the global
shape or symmetry of the snake (Fig. [2). Many useful user-definable spring
constraint arrangements are also possible.

Fig. 2. Segmenting the putamen from MR volume image. In (a) the user enters lines
in the first image and turns on the control polygon springs to act as global shape
constraints. In (b) to (g) the snake ‘tracks’ the putamen.

4 Experimental Results

We have applied our B-spline template-snake to several 2D images. In Fig. [
we show the initial snake and the final segmentation of the CC for several 2D
mid-sagittal MR brain images. The algorithm has been tested on 26 CC images,
using five user input lines each. The average error when compared against expert
manual segmentations is 0.6 pixels, where the error is defined as the shortest
distance between the snake points and the expert segmented boundaries. This
error can be reduced by using additional program-added degrees of freedom or
by additional user input lines for some CC’s. Note that once the input lines are
entered, no further user editing of the snake is needed. In Figure[4 we show the
initial user lines, the resulting initial snake and the final segmentation of the
arm bone in an x-ray image. This image is very noisy, especially where the two
bones overlap. There are many large gaps in the edges of the bone boundary and
many spurious edges inside the bone. Notice how, with only a few input lines,
the initial snake is almost the same shape as the bone. The model ignores edges
that are not of a specific magnitude and direction.
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Figure 2l demonstrates the use of the global shape constraints. The goal is to
segment the putamen from several slices of an MR image volume. The putamen
is adjacent to the gray matter and to the globus pallidus - both with highly
similar intensity to the putamen. Consequently, there are many large gaps in
the putamen boundary, and texture in the interior. The user enters lines in the
first image and turns on the control polygon spring constraints (Fig. la)). The
snake is able to successfully ‘track’ the putamen in neighboring slices with no
user editing. Without the shape constraints, many user interventions are required
to correct the segmentation. If a large shape change occurs between slices, the
constraints springs also provide more efficient user editing of the snake.

Fig. 3. Example corpus callosum segmentations using a B-spline snake. The first row
shows the user input lines, the second row shows the initial B-spline snake and the final
row shows the result.

5 Conclusion

We have created a user-definable deformable template model using a B-spline
snake. A simple but effective and efficient initialization process, coupled with the
properties of a B-spline, enables the construction of a snake that is extremely
close to and similar in shape to the target anatomical structure. This allows the
user to create customized external forces and utilize custom fitting algorithms,
ensuring a more robust and automatic segmentation result. The B-spline control
polygon provides a framework for imposing global shape constraints. We are
also moving towards a NURBS-based snake, which will allow us to use control
points as well as their associated weights, and nonuniform subdivision to create
even more accurate initial template snakes. Future work involves the design
of customized model fitting algorithms that will minimize the number of user
lines required for initialization and the extension of the technique to 3D using
deformable Doo-Sabin and NURSS subdivision surface models.
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Fig. 4. Segmenting a bone from a noisy x-ray image. (a) user input lines (b) initial
B-spline snake (c) segmentation result.
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