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Abstract. We present a hierarchical object–based deformable atlas, a
promising new approach for the automatic localization and quantitative
analysis of neuroanatomy in MR images. The 3D finite element-based
elastic atlas combines the advantages of both volumetric– and surface–
based deformable atlases in one single unifying framework. This multi-
resolution framework is not only capable of deforming entire volumes or
subvolumes but can deform individual atlas objects, allowing greater and
more effective use of object shape and local image feature information.
Object surface representations are embedded in the volumetric defor-
mable atlas and image-feature-derived forces acting on these surfaces
are automatically transferred to the containing 3D finite element lattice.
Consequently, spatial relationship constraints of the atlas objects are
maintained via the elastic lattice while an object is deformed to match
a target boundary. Atlas objects are deformed in a hierarchical fashion,
begining with objects exhibiting well-defined image features in the target
scan and proceeding to objects with slightly less well-defined features.
Experiments involving several subcortical atlas objects are presented.

1 Introduction

The automatic localization of neuroanatomy in MR images and the subsequent
quantitative analysis using 3D elastically deformable atlases is gaining increased
attention in medical imaging research [10,11,6,3,12,5,8,13,7]. These model-based
techniques can dramatically decrease the time required for the localization task
over interactive methods as well as improve the objectivity, reproducibility, and,
potentially, the accuracy of the localization. A fitted anatomical atlas can then be
used as a fundamental component for the assessment of structural brain abnor-
malities, for mapping functional activation of the brain onto the corresponding
anatomy, and for computer-assisted neurosurgery.

There are essentially two approaches to deformable atlas matching: volumetric–
based and surface–based. While both approaches offer a powerful strategy for
efficient localization and analysis, they suffer from several well-known deficien-
cies affecting the accuracy of the localization. Volumetric approaches maintain
the spatial relationships of the atlas objects implicitly via the elastic medium in
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which they are embedded. However, these methods are sensitive to their initial
placement – if the initial rigid alignment is off by too much, parts of the atlas
may incorrectly warp onto the boundaries of neighboring features. This problem
is exacerbated by the fact that volumetric methods discard the shape informa-
tion of each atlas object and use only local intensity variations between the atlas
and the target scan to drive the matching process.

Surface-based methods typically manually initialize several parametrically
defined deformable surfaces – each representing a different neuroanatomical
structure – and subsequently elastically deform the surfaces to extract the shapes
of the target object boundaries. Each atlas object surface and its corresponding
deformed surface in the target scan are then matched to produce surface war-
ping functions. Using this surface warping information, a volumetric warp can
be calculated via interpolation to deform the atlas material between the surfaces
and register it with the target scan. One problem with this approach is that the
surfaces are warped independently - the spatial relationship constraints provi-
ded by the elastic medium in the volumetric approach are initially discarded.
Furthermore, if generic deformable surfaces are used — that do not make use
of the known atlas object shape— then pieces of the object in the target scan
could be missed by the deformable surface due to poor resolution or noise.

In this paper, we describe a new hierarchical object-based deformable atlas
that combines the advantages of both the volumetric and surface based models
in one unifying framework. The multi-resolution framework is not only capa-
ble of deforming entire volumes or subvolumes but can deform individual atlas
objects and make use of image feature knowledge of an object. By embedding
smooth surface representations of atlas objects into the finite element-based vo-
lumetric deformable atlas, image-feature-derived forces acting on these surfaces
are automatically transferred to the surrounding volumetric finite elements. The
subsequent deformation of the elements automatically deforms the embedded
surfaces. Consequently, we maintain the spatial relationship constraints of the
atlas objects via the elastic “medium” while also making use of shape and inten-
sity information of each object. The atlas is deformed in a hierarchical fashion,
beginning with an initial rigid alignment and elastic match over the entire vo-
lume. We then warp individual atlas objects and the surrounding volume in a
specified neighborhood, starting with objects exhibiting well-defined image fea-
tures in the target scan (such as the lateral ventricles), and then proceeding to
objects with slightly less well-defined image features, and so on.

The motivation behind our approach is that while the standard volumetric
deformable atlas approach can provide an automatic, efficient and good “over-
all” match of the atlas, there are still mismatches in individual atlas objects
that can only be corrected by adjusting the object itself. At the same time, this
“fine–tuning” should maintain and use the correct spatial relationships of neig-
hboring objects. In the remainder of the paper, we will first describe an initial
implementation of our model and then present some preliminary results using
several subcortical structures to demonstrate the potential of this promising new
approach.
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2 Deformable Atlases

The idea behind a deformable anatomical atlas is to take the information con-
tained in the atlas (typically a set of labeled voxels where the labels correspond
to anatomical structures) and transfer this information onto the target dataset
via a nonlinear warping function. To perform the warp, the atlas is typically mo-
deled as a physical object and is given elastic properties. After an initial global
alignment, the atlas deforms and matches itself onto corresponding regions in
the brain image volume in response to forces derived from image features such as
voxel similarity or image edges. To maintain the atlas topology and connectivity,
the elastic properties of the atlas give rise to internal forces which regularize the
deformation. The assumption underlying this approach is that at some repre-
sentational level, normal brains have the same topological structure and differ
only in shape details.

The idea of modeling the atlas as an elastic object was originated by Broit
[4]. Bajcsy and Kovacic [1] subsequently implemented a multiresolution version
of Broit’s system where the deformation of the atlas proceeds step-by-step in
a coarse to fine strategy, improving the robustness of the technique. The ela-
stically deformable volume approach has become a very active area of research
[10,11,6,3,7], and has recently been extended to a viscous fluid deformable volume
[6] in an attempt to overcome the small deformation assumptions inherent in the
linear elastic formulations. Although surface based deformable models have been
widely used to segment medical images, surface-based deformable brain atlases
are a more recent development [12,5,8,13].

3 Hierarchical Object-Based Deformable Atlas

Our model combines the advantages of the volumetric and surface based methods
by integrating both approaches into one framework. This hybrid model embeds
the surface of atlas objects into the solid deformable finite element mesh or
lattice representing the elastic atlas. The result is that the deformation of atlas
objects can be controlled individually or in combination while automatically
maintaining the spatial relationships of each object via the elastic lattice. The
model also has other distinct advantages:

– Multiple object-based image features can be used to attract an atlas object
towards its boundary in the image. For example, known image intensity
statistics of individual objects and neighboring objects can be used to weight
a pressure force, driving the model towards salient boundary edges.

– Computing forces on the object surface and distributing these forces to the
volumetric finite elements results in an accurate deformation of the object
without discarding the contextual knowledge of the neighboring objects. The
displacements of the deformed object are automatically passed on to the
neighbors through the surrounding elastic lattice, resulting in improved lo-
calization of these objects. In addition, several neighboring objects can be
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deformed concurrently in which case each object “competes” for the owners-
hip of image features.

– The atlas is initially deformed over its entire volume to provide a good in-
itialization of each atlas object. Atlas objects can be then deformed in a
hierarchical fashion - from objects exhibiting very well-defined image fea-
tures to objects with weaker features. After an object has been deformed
we compute forces on it to maintain its equilibrium position. This acts to
constrain the deformation of neighboring objects with adjacent boundaries
(and less well-defined image features).

– The material properties of the 3D finite elements can be controlled on an
object basis. Each object can use predefined elastic properties based on kno-
wledge of the amount of deformation that typically will take place. If very
large deformations are required an object can be deformed in phases, using
coarse and rigid finite element meshes in initial phases and using finer, more
flexible meshes in subsequent phases.

(a) (b) (c)

Fig. 1. (a) Synthetic object surface, (b) surface embedded in elastic 3D lattice, (c)
cross-sectional view of deformed lattice and surface (surface: white, lattice: black, target
data: gray).

3.1 Model Structure

We construct our object-based elastic atlas using a deformable 3D lattice or
grid consisting of cubical finite elements. Each finite element corresponds to a
labeled atlas voxel (or group of voxels). To deform a specified atlas object, we
reconstruct a smooth triangulated surface of the object from the atlas using a
modified marching cubes algorithm (Figure 1(a)). For each surface vertex, we
compute its containing cubical element (Figure 1(b)) and the relative position of
the vertex within the element. Image feature forces are calculated for each vertex
and are then distributed to the nodes of the containing finite elements using the
element basis (interpolation) functions. The elastic elements are then deformed
and the nodal displacements calculated (Figure 1(c)). The new positions of the
surface vertices are then computed based on their relative positions within their
containing cubical element and the displacement of the element nodes. This
process is repeated for a specified number of iterations.
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(a) (b) (c)

Fig. 2. Surface of caudate nucleus embedded in finite element mesh, (a) element size:
8 voxels, element layers: 1, (b) es: 4, el: 1, (c) es: 8, el: 2.

The lattice of cubical elements surrounding an atlas object can be controlled
in a number of ways (Figure 2) by varying the element size, the number of
element layers surrounding the object, and the element material properties.

3.2 Finite Element Implementation

The elastically deformable lattice model is implemented using the displacement-
based finite element method. A brief description of this method for linear elastic
bodies is provided below. Readers are referred to [2] for complete details.

In the displacement-based finite element method, a three dimensional body
is located in a fixed coordinate system X = [X, Y, Z]>. The body is subjected
to externally applied forces:

fB = [fB
x fB

y fB
y ]>, fS = [fS

x fS
y fS

z ]>, Fi = [Fxi Fyi Fzi ]
> (1)

where fB are the body forces (force per unit volume), fS are the surface traction
forces (force per unit area), and Fi are the concentrated forces (i denotes the
point of force application) due to attachments. The displacements of the body
from the unloaded configuration are measured in the coordinate system X and
are denoted by U(X, Y, Z) = [UV W ]>. The strains corresponding to U are:
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the corresponding stresses are denoted τττ> = [τXX τY Y τZZ τXY τY Z τZX ], and
finally the stress-strain relationship for a linear elastic body is given by τττ = Dεεε,
where D is the stress-strain material matrix (the elastic coefficients).

Assuming a linear elastic continuum with zero initial stresses, the total po-
tential energy of the body can be written as

Π(U) =
1
2
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∫ ∫
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U>fB dV −
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US>
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∑
i

Ui>Fi. (3)
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Assuming, furthermore, a continuous displacement field U that satisfies the dis-
placement boundary conditions, the solution U is at the minimum of this energy
and is found at the vanishing of the first variation of Π (i.e. δΠ = 0).

We approximate the body as an assemblage of discrete finite elements in-
terconnected at nodal points on the element boundaries. The displacements,
measured in a local coordinate system x, y, z within each element, are assumed
to be a function of the displacements at the N finite element nodal points:
uj(x, y, z) = Hj(x, y, z)Û, where Hj is the displacement interpolation matrix
of element j, and Û is a vector of the three global displacement components
U, V, W at all nodal points. Currently we use an 8-node hexahedral element in
our implementation (higher-order elements can also be used) and the element
interpolation functions are specified in [2].

One typically calculates all element matrices using only element nodal dis-
placements and the corresponding nonzero components of Hj for element j so
that: uj = Njûj , where ûj and Nj are the element nodal displacements and
basis functions, respectively. Using equations (2) and the stress-strain relati-
onship, we can then evaluate the element strains as, εεεj = Bjûj , where Bj is
obtained by differentiating the components of Nj . Using these two equations,
the potential energy (3) can be rewritten in terms of its elemental contributions
and subsequently minimized on an element-by-element basis:

Π =
∑

j

Πj(u) =
∑

j

{
1
2

∫ ∫
V j

ûj>Bj>
DjBjûj dV

−
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ûj
i
>NjFj

i

}
.

(4)

Solving for the first variation of Π leads to the equilbrium equation ∂Πj

∂ûj =
Kjûj − f j , where Kj and f j are the element stiffnes and load matrices, respec-
tively. We introduce a simple velocity-proportional damping force and rewrite
the equibrium equations as Cj d ûj

d t + Kjûj = f j , where Cj is a diagonalized
damping matrix with velocity damping coeficients γ along the main diagonal.
We currently integrate this equation forward through time using an explicit first-
order Euler method on an element-by-element basis, making the model fitting
process efficient and easily parallelizable.

An isotropic linear elastic material is characterized by the Lamé constants, λ
and µ. These constants are also related to Young’s modulus of elasticity E and
Poisson’s ratio ν:

E =
µ(2µ + 3λ)

µ + λ
, ν =

λ

2(µ + λ)
, (5)

where E relates tension of the object and its stretch in the longitudinal direction
and ν is the ratio of lateral contraction to longitudinal stretch. We typically set
λ to zero and allow E to range from 0.25 to 0.75, producing a range of stable
elastic behavior from relatively stretchy to relatively rigid.
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3.3 Applied Forces

As mentioned earlier, forces are computed for each of the surface vertices and
are then distributed to the 8 nodes of the containing element using the element
shape functions Nj . We use a weighted pressure force, where the weights are
derived from precomputed atlas object intensity statistics, to deform the object
surface:

F (I(xi)) = +1, |I(xi) − µ| ≤ kσ, F (I(xi)) = −1, |I(xi) − µ| > kσ, (6)

where µ is the mean image intensity of the target object, σ the standard deviation
of the object intensity and k is a user defined constant.

We also use a functional F based on intensity gradients computed along
a surface vertex normal. It is often the case that the intensity of an object
varys considerably over its extent, limiting the usefulness of functionals based
on absolute image statistics. However, the intensity gradients between an object
and its neighbors is often fairly consistent when computed over a large enough
surface region surrounding a surface vertex:

F (I(xi) = −1, |∇I(xi) · ni| >= C, F (I(xi) = +1, |∇I(xi) · ni| < C, (7)

where C is the known average difference in intensity between two objects. The
signs are reversed in the functional if C is negative.

4 Experiments

The deformable atlas is based on an MR brain atlas developed in our laboratory
[9]. To match the atlas to the target MRI scan, we first apply a rigid registration
to the atlas followed by a generic volumetric elastic match [7] to initially deform
the atlas and provide good initial positions of atlas objects 1. We then use the
deformed atlas to generate smooth surfaces of objects and apply our model to
deform the objects.

We have used our technique in a set of preliminary experiments to deform
several subcortical structures and match them onto a target MRI scan. Although
the technique has not yet been validated with a large number of datasets, the
results of our experiments are extremely promising - the model appears robust to
noise and in regions containing sufficient image feature information, generates
visually accurate results. In these preliminary experiments, we use a merged
left and right lateral ventricle, the left and right caudate nucleus, the corpus
callosum, and the left and right putamen. Two deformation phases were used
with 30 steps in the first phase and an element size of 4 voxels and 30 steps
in the second with an element size of 2 voxels. This unoptimized version of our
system is still quite efficient and each deformation step takes from 1 to 10 seconds
(depending on the number of objects deformed concurrently and the number of
elements). In the first experiment we deform the merged lateral ventricles, the
1 Although a separate elastic matching program is currently used to initially deform

the atlas, we will eventually incorporate this stage into our model framework.
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(a) (b) (c)

Fig. 3. (a) Manual tracing of left and right caudate nucleus and merged left and right
lateral ventricle for slice 72, (b), (c) cross-section of initial and deformed surfaces.

left and right caudate nucleus and the surrounding volume (4 element layers are
used). A significant segmentation improvement is obtained (figure 3(b, c)). In
the second example, we deform the right putamen (Figure 4(a)(b)). The image
intensity of the putamen varys considerably over its extent and its boundary
is very noisy. For this reason, we integrate image feature information over a
surface region centered at each surface vertex and then average this information
to compute more reliable applied forces. In the final experiment we deform the
corpus callosum (Figure 4(c)(d)). The strong edge features of this object results
in a very accurate localization near the center of the object.

(a) (b) (c) (d)

Fig. 4. Cross-section of initial and deformed surface of (a)(b) right putamen, (c) (d)
corpus callosum. The dashed line in (a)(b) is a manual tracing.

5 Conclusion

We have created a 3D finite element-based object-oriented model to control the
elastic deformation of a neuroanatomical atlas. The model framework provides
us with the ability to deform not only the entire atlas or subvolumes of the
atlas, but individual objects, separately or in combination. This ability allows
us to accurately localize neuroanatomical structures in a target scan. The mo-
del has demonstrated considerable potential in preliminary experiments. We are
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currently applying our model to a large number of datasets to validate its ef-
fectiveness. We are also exploring several model improvements with the goal of
creating a single unified framework for the precise control of atlas deformation,
ranging from the elastic deformation of deep subcortical structures, to a con-
strained viscoelastic deformation of the cortical surface. In particular, we intend
to replace the cubical mesh lattice with a 3D finite element mesh that conforms
to the geometry of each atlas object. The goal is to generate an axial-based or
skeleton-based object parameterization so that the shape of an object can be
constrained to maintain a feasible shape and its deformation can be controlled
in a scheduled, global-to-local manner. This will allow us to make optimal use
of object shape, symmetry, and image feature information.

References

1. R. Bajcsy and S. Kovacic. Multiresolution elastic matching. Computer Vision,
Graphics, and Image Processing, 46:1–21, 1989.

2. K.J. Bathe. Finite Element Procedures. Prentice Hall, 1996.
3. F.L. Bookstein. Thin-plate splines and the atlas problem for biomedical images.

In Information Processing in Medical Imaging: Proc. 12th Int. Conf. (IPMI’91),
Wye, UK, July, pages 326–342, 1991.

4. C. Broit. Optimal Registration of Deformed Images. PhD thesis, Computer and
Information Science Dept., University of Pennsylvania, Philadelphia, PA, 1981.

5. C.A. Davatzikos, J.L. Prince, and R.N. Bryan. Image registration based on bo-
undary mapping. IEEE Trans. on Medical Imaging, 15(1):112–115, Feb. 1996.

6. G. Christensen et al. Deformable templates using large deformation kinematics.
IEEE Transactions on Image Processing, Sept. 1996.

7. Iosifescu et al. An automated measurement of subcortical brain mr structures in
schizophrenia. Neuroimage, 6:13–25, 1997.

8. J.W. Snell et al. Model-based boundary estimation of complex objects using hier-
archical active surface templates. Pattern Recognition, 28(10):1599–1609, 1995.

9. R. Kikinis et al. A digital brain atlas for surgical planning, model driven segmen-
tation, and teaching. IEEE: Visualization and Computer Graphics, 2(3):232–241,
1996.

10. A.C. Evans, W. Dai, L. Collins, P. Neelin, and S. Marrett. Warping of a compu-
terized 3D atlas to match brain image volumes for quantitative neuroanatomical
and functional analysis. In Medical Imaging V: Image Processing, volume 1445 of
SPIE Proc., pages 236–246, 1991.

11. J. Gee, M. Reivich, and R. Bajcsy. Elastically deforming 3D atlas to match ana-
tomical brain images. Journal of Computer Assisted Tomography, 17(2):225–236,
March-April 1993.

12. D. McDonald, D. Avis, and A. Evans. Multiple surface identification and matching
in magnetic resonance images. In Proc. Third Conf. on Visualization in Biomedical
Computing (VBC’94), Rochester, MN, October, 1994, pages 160–169, 1994.

13. P. Thompson and A.W. Toga. A surface-based technique for warping three-
dimensional images of the brain. IEEE Trans. on Medical Imaging, 15(4):402–417,
August 1996.


	Introduction
	Deformable Atlases
	Hierarchical Object-based Deformable Atlas
	Model Structure
	Finite Element Implementation
	Applied Forces

	Experiments
	Conclusion

